
Engineering Challenges in Legal Technology

Anthony Cassandra, Ph.D.

Director of Engineering

February 1, 2019



2

Outline

■ Who am I?

■ Where am I?

■ What do I do?

■ What are my problems?

■ What are your questions?



Who am I?

3



4

Education

University of Buffalo Nothing

Suffolk County Community College A.S.

Stony Brook University B.S.

Brown University M.Sc.

Brown University Ph.D.



5

Work Experience
machinist, inspector factory 7+ yrs.

researcher industrial lab 3 yrs.

founder, engineer, director failed startup 2 yrs.

adjunct professor large university 1 yr.

engineer, researcher industrial lab 1 yr.

assistant professor small university 3 yrs.

researcher academic lab 1 yr.

founder, engineer, CTO successful startup 8 yrs.

engineer, architect, manager medium-sized company 3 yrs.

engineer, architect, director successful startup 2 yrs



Where am I?

6



7

Current Company

■ CS DISCO, Inc.

■ Legal Technology

■ e-Discovery Product

■ Cloud-based

■ Recent funding round.

● Expanding to support more of the legal processes.



8

The Legal Discovery Process



9

Searching During e-Discovery



10

Document Reviewing and Tagging



What do I do?

11



12

Platform Team Name: Atlas

■ AWS Aurora: main system of record (SoR) for documents:

● > 1 billion documents (and growing); and

● > 125 attributes (+ text) per document (and growing).

■ Elasticsearch: search is the “heart” of our product:

● > 140 data nodes (across 4 clusters); and

● > 150 TB storage across all indices (and growing).

■ Services / APIs: for insert, update, lookup and search, etc.



13

Sample of Our Technologies

■ Python / C# / Bash

■ AWS: Aurora/RDS, S3, ECS, ECR, SQS, Lambda, EC2

■ Elasticsearch, Redis, Consul, Celery, Flask, Git

■ Datadog, Kibana, Packetbeat, Filebeat, Logstash, Logspout

■ Docker, Jenkins, Terraform, Code Pipeline, OpsWorks

Everyone on the team has to be familiar with all of these.



14

Unique Domain Problems

■ Previous retail product search experience:
● tens of millions of users;
● simple queries; with
● low data durability and recall requirements.

■ Current legal search experience:
● thousands of users;
● highly sophisticated and very complex queries; with
● very high data durability and recall requirements.



15

Team’s Technical Challenges

■ Underlying data model has reached its limits.

■ Redesigning infrastructure to scale further.

■ Continue to support new features of the review product.

■ Supporting new products.

■ Scaling team, organization and operations.

 These are typical for a startup that has survived.



What are my problems?

16



17

Similar Documents Feature



■ Original quick-n-dirty, start-up version:

● poor quality; and
● does not scale.

■ Replace with a better version:

● shingling;
● min-hash; and
● locally sensitive hashing (LSH).

The Similar Documents Project

18



19

Base Requirements

■ Pagination and sorting requirements.

■ Strong (< 100ms) service level agreements (SLAs).



■ Leaves us with a problem requiring O(n2) comparisons.

■ We can have n = tens of millions of documents.

■ Our CS training tells us to avoid anything O(n2).

Design Challenge

20



21

The “Right” Solution

■ Pre-compute and cleverly index min hashes.

■ Do comparisons dynamically at query time.

■ Individual query and storage only O(n).

Shingling,
Min Hashing

Storage
Hashes

Documents

Similarity 
Service

Indexing
Service



22

Problem I - Search Sorting Requirements



23

Problem I - Search Sorting Requirements



24

Problem II - Search Syntax Requirements



25

Bottom Line

■ We must pre-compute similar documents (and counts).

■ It is the only way we can:

● efficiently sort by counts; and
● know the counts while searching.

■ Needs O(n2) computation.

■ Needs O(n2) storage.



26

Worst Case Analysis

■ Documents in a legal case:

● 3 x 107

● = 30,000,000 (30 million)

■ Possible similar document relations:

● (3 x 107) * (3 x 107) 

● = 900,000,000,000,000 (900 trillion)



27

Strategy

■ Raise the Alarm!

■ Talk to the Product Manager!



28

Business Reaction

■ Worst case analysis does not impress anyone.

■ Business is fuzzy: it is about risks and trade-offs.

■ Needs to be a practical problem, not a theoretical one.



29

Practically Speaking ...

■ Average case is much, much lower.

■ Average case is within in realm of possible.

■ But still need limits on a per-document basis still needed.

■ Worst case for design is still hundreds of millions.

■ Back to the Product Manager for more “negotiations”.



30

This is What Success Looks Like

■ Requirement Changed: 10K maximum per document.

■ New worst case:

● (3 x 107) * (1 x 104) = 300,000,000,000 (300 billion)

■ Ain’t that better?

■ Average case estimates:

● 10’s of millions for large legal cases.

■ What if we are wrong?



31

What Next?

■ How to generate all the similar docs relations?
● Answer: Parallelize and distribute (by different team).

■ But final “counts” require global knowledge.
● Must collate after parallel computation is done.

■ How to do all this “fast” enough?
● The customer is waiting.

■ How to store all this data?
● There’s going to be a lot of it.



32

Data Storage Choices

■ AWS Aurora?

■ AWS Dynamo?

■ Apache Cassandra?

■ Other key-value stores? (e.g., Mongo, Redis)

■ Other columnar stores? (e.g., Vertica)



33

Dangers in Choosing Technologies

■ Engineers’ Biases:

● Newest

● Coolest

● Most interesting

● Most familiar

● Theoretical best

● Resume building



34

Practical Considerations

■ Do we want to introduce a new platform dependency?

■ Do we want to introduce a learning curve for the platform?

■ Do we have the operational expertise for the platform?

■ Amount of maintenance is needed by the platform?

■ Time to market considerations?

■ Tends to be a buzz-kill for younger engineers.

■ All these led to benchmark Aurora vs. Dynamo.



35

Performance and Cost Testing

■ Both Aurora and Dynamo should be able to do the job.

■ AWS has different cost models and different performance:
● Annoying amount of time spent dealing with pricing.
● CPU, read/write request, GB stored, data transfer, etc.

■ Need to tweak and benchmark them to meet SLAs.
● Hard to know the right price point without testing.

■ Only then can we determine the costs and choose.
● Spoiler Alert: Aurora Won



36

Can we Afford It?

■ Cost of Goods Sold (COGS): important business metric.

■ “Cost” in this context is our AWS bill.

■ We charge customers by their data size (GB / month).

■ Our financial models depend on estimates of costs per GB.

■ Material change in COGS is of great interest the business.



37

Now, we do the math ...

■ The storage cost can grow considerably, but:
● the more similar docs storage we need, 
● the more documents there are, and
● the more we would be charging. 

■ This adds much less than 1% to costs per GB.

■ i.e., Storage truly is cheap.



38

Now We Build It
■ Distributed System Design
■ Interface Definitions
■ Logging
■ Monitoring
■ Alerts 
■ Metrics / Dashboards
■ High Availability (HA)
■ Disaster Recovery (DR)
■ Deployment plan
■ Release plan
■ Test plan

■ Documentation
■ Component diagrams
■ Sequence diagrams
■ Architecture Review
■ Configuration
■ Project task breakdown
■ Time estimates
■ Cost estimates
■ Cross-team coordination
■ Scheduling



39

Solution

■ An expensive, inelegant and inefficient system, but it

■ enables features that will be a competitive advantage and

■ will not materially cut into our profit margins.



40

A Conclusion

■ There is no “right” way to build a piece of software.

■ Business context dictates what is “right”.

■ The business context will change as the company grows.

“Today’s bad hack was yesterday’s good decision.”



What are your questions?

41



Thank You
www.csdisco.com

42


