Efficient dynamic-programming updates in
partially observable Markov decision processes

Michael L. Littman
Anthony R. Cassandra
Leslie Pack Kaelbling

December 12, 1995

Abstract

We examine the problem of performing exact dynamic-programming
updates in partially observable Markov decision processes (POMDPS)
from a computational complexity viewpoint. Dynamic-programming
updates are a crucial operation in a wide range of POMDP solution
methods and we find that it is intractable to perform these updates
on piecewise-linear convex value functions for general POMDPs. We of-
fer a new algorithm, called the witness algorithm, which can compute
updated value functions efficiently on a restricted class of POMDPs in
which the number of linear facets is not too great. We compare the
witness algorithm to existing algorithms analytically and empirically
and find that it is the fastest algorithm over a wide range of POMDP
sizes.

1 Introduction

A partially observable Markov decision processes (POMDP) is a Markov deci-
sion process in which the decisions must be based solely on noisy and incom-
plete observations of the system’s state. Although this model can be applied
to a wider range of problems than can the Markov decision process model,
it has received much less attention, in part because solving even the smallest
POMDP is computationally demanding.

In this paper, we discuss the computational difficulty of making dynamic-
programming updates in POMDPs and show that, if the class of POMDPs con-
sidered is restricted appropriately, a new approach called the witness algo-
rithm can be used to perform these updates efficiently. We provide computa-
tional analyses of several prior algorithms for dynamic-programming updates
in POMDPs, which show that each of these algorithms scales poorly in at least
one critical task parameter. An empirical study of the algorithms supports
these analyses and shows that the witness algorithm is able to solve POMDPs
of a wider range of sizes; however, all exact solution methods are intractable
for most large practical problems.

2 Problem Formulation

The reader is referred to the excellent surveys by Monahan [6], Lovejoy [5],
and White [15] for a thorough introduction to solving POMDPs algorithmi-
cally. This section briefly presents notation and background results that
enable us to define the problem addressed in this work. Our notation follows
that of White.

A POMDP is defined by a system state space S, an observation space Z,
and an action space A, all finite. A set of transition/observation matrices
summarizes the dynamics of the model. We define P(z,a) to be a matrix
of probabilities; the ¢, jth component of P(z,a), written P(z,a)[s,], is the
probability that the system will make a transition to system state j € S and
make observation z € Z given that action a« € A was issued from system
state ¢+ € §. Immediate rewards for each system state under action a are
given by the column vector r(a).

In most POMDP applications, the objective is to find a policy, or decision
rule, that selects actions so as to maximize the expected long-term reward.
Since the system state is only partially observed, action decisions are based
upon the history of observations and actions, which can be summarized in
several ways. In this work, we summarize past history using probability dis-
tributions over system states, called information states, which are sufficient
for making optimal decisions.

Let X be the set of information states and VX the set of bounded, real-
valued functions over X. A wvalue function v € VX assigns to each infor-
mation state a measure of its overall utility. Of central importance to many
POMDP algorithms is the dynamic-programming update. It can be expressed

as an operator H that uses P(z,a) and r(a) to transform a value function
v into a new value function Hwv, which incorporates one additional step of
rewards into v.

We will define H more carefully in the next section, but it is worth not-
ing here its critical role in a host of POMDP solution methods. Dynamic-
programming updates can be used for solving finite-horizon POMDPs [11],
finding approximate solutions to infinite-horizon discounted POMDPs by value
iteration [9], performing policy improvement in infinite-horizon algorithms [13],
computing optimal average-reward policies [12], and accelerating convergence
of successive approximation methods via reward revision [16]. Most of these
approaches treat H as a primitive operation, so any improvement in the
speed with which H can be computed immediately translates into speed-ups
for a wide range of advanced POMDP algorithms.

Before we can state the problem addressed in this work, we need to com-
mit ourselves to a specific representation for value functions. It is known
that the dynamic-programming operator H preserves piecewise linearity and
convexity and that piecewise-linear convex functions have a convenient repre-
sentation as finite sets of vectors, described in more detail below. Therefore,
if we represent a value function v as a set of vectors I', then Hv can be
represented by a set of vectors I”. With this background established, we can
define the central problem of this work.

Problem Statement Given a set of vectors I' representing a value function
v € VX, compute a minimal set of vectors T representing Hv.

Although many algorithms for solving this problem have been proposed
over the last twenty years [11, 6, 3, 2, 15], the algorithm described in this
work is the first developed with close attention to issues of computational
complexity and is currently the most efficient exact algorithm for performing
dynamic-programming updates over a wide range of POMDP sizes.

We will now define the dynamic-programming operator H. Let 0 < 3 <1
be a discount factor. Let H® : VX — V¥ be the dynamic-programming
operator for action a € A, specifically, if v(x) is the value of information
state x, then [H®](z) is the expected immediate reward for taking action «a
plus the discounted expected value of the information state resulting from
taking action @ from information state x.

We can define the dynamic-programming operator H by

[Hol(x) = max([H"v](x).

If v(x) is the value of x, then [Hv](z) is the expected immediate reward
plus the discounted expected value of the information state corresponding to
taking the best action from information state z.

Smallwood and Sondik [11] showed that H® and H preserve piecewise
linearity and convexity and therefore that Hv can be represented in a con-
venient form if v is piecewise linear and convex.

Theorem 1 Ifv € VX is a piecewise-linear convex function represented as
a set of vectors I', such that

v(z) = max(z-7),

then there exist finite sets of vectors G* and G, such that

[H*0](2) = max(z - 7)

and [Hv](x) = maxyeq(z -).

Smallwood and Sondik’s proof gives a very explicit form for the sets G
and G°. Let T be the set of functions mapping observations to vectors in T'.

The sets G* and G are defined as
G ={[r(a)+ B> P(z,a)-g(2)llg € T}

and G = U, G". We say a vector v € G* is constructed from g € T if
3 = [rla) 4 55, P(z.a) - g(2)].

We define I" C @ and T'* C G* to be the sets of minimal size that
represent Hv and H%, respectively. It is the case that IV and I'* are often a
great deal smaller than G and G, since some of the vectors may give maximal
dot products for no # € X (see Figure 1); for efficiency reasons, it is these
minimal representations that the POMDP algorithms should manipulate.

To define T and I'* in a way that makes them easier to compute, we
need to introduce a few additional concepts. We define an arbitrary order
on the system states in S and let v be an |S|-vector with +[i] denoting
the component of ~ corresponding to system state 1 € S. We say v 1s
lexicographically greater than v, if there is some system state ¢ € S such that
y1lt] > 72[i] and y1[i'] = ~2[¢'] for all i/ < i. We can also inductively define
the lexicographic maximum vector in a finite set.

Y1

value 2

Tq

13

s

X

Figure 1: An illustration of a slice of a value function and the vectors that
define it. Note that the vectors 74 and ~5 can be eliminated without changing
the value function.

Let F be a finite set of vectors. We say v dominates all vectors in F at
re X if
zoy >z

for all 4/ € F — {v}. Note that v may or may not be in F and that the
defining inequality is strict. Let R(«,F) represent the set of all @ € X
for which the above inequality holds; that is, R(«, F) is the region of X
over which v dominates all other vectors in F. For convenience, we define
R(v,0) = X. We call a vector v useful with respect to a set F if R(vy, F)
is non-empty, because removing v from F would change the piecewise-linear
convex function that F' represents.

The following lemma, proved in Appendix A.1, links the notions of lexico-
graphic maximum vectors and domination. It is important for guaranteeing
that particular vectors in G are useful.

Lemma 1 Given an information state x and a set of vectors F, let v* be the
lexicographic mazimum vector in F such that x - v* = maxyep(x - y). Then
there exists an x' such that &' € R(y*, F), that is, v* dominates all other
vectors in F at x'.

We can now prove an important property of the representation of piecewise-
linear convex functions by minimal sets of vectors. It shows that I'* and I
have a computationally convenient characterization with respect to G* and

G.

Theorem 2 Let v € VX be a piecewise-linear convex function over X such

that v(x) = max,ep(x - v) for some finite set of vectors F. Let
®={y:v€F and R(v, F) # 0}.

Then the vectors in ® are necessary and sufficient for representing v; that
is, for any strict subset U of ® there exists an x € X such that v(z) #
maxyep(x - 7y), and at the same time, v(x) = max,ee(- 7).

Proof: We first show that every vector v € ® is necessary for representing
v. Consider any « € R(v, F). Such an x exists by construction of ®. From
the definition of R, we know that no other vector in F gives as large a dot
product with = as v does. Therefore, the value function represented by any
set U C F' —{~} would have a strictly smaller value at = than v does. Thus,
every 7 € ® is needed to represent v.

Next, we show that ® is a sufficient representation of v, that is, v(z) =
maxyea(x - v). To see this, consider any @ € X. Let 4* be the lexicographic
maximum vector in F such that x - y* = max,ep(z - 7). By Lemma 1, there
exists an 2’ such that 2/ € R(y*, F), so v* will be included in ®. Thus,
v(x) = maxyep(2 - y) = 2 - 4" = maxyeo(x - y). Since this holds for every z,
® represents the same function that F does. O

The problem addressed in this work is therefore equivalent to finding the
set

I"={y:v € Gand R(v,G) # 0}.

The next section explores what it means to compute I efficiently.

3 Computational Complexity

This section discusses concepts from the theory of computational complexity
as they apply to the problem of performing dynamic-programming updates in
POMDPs, in particular, to the problem of computing IV from I'. We show that
the problem is likely to be intractable unless we restrict the class of POMDPs
considered. We propose a particular class of POMDPs in which Y, |T?| is
restricted, and show that problems in this class can be solved efficiently by
the witness algorithm.

Intuitively, an algorithm is efficient if it can be used to solve reasonable-
sized instances of a problem in a reasonable amount of time. In computer
science, this has been formalized as follows. An efficient algorithm is one

whose running time (a measure of the number of primitive operations re-
quired to solve a problem instance) grows more slowly than a polynomial
function of the input size of the problem instance (a measure of the number
of bits it would take to write down the problem instance). In the context of
dynamic-programming updates in POMDPs, we have the following definition
of efficiency.

Definition An algorithm for computing I'' is efficient if its worst-case run-
ning time can be bounded above by some polynomial function of |S|, |Z|, |A|,

and |T'|.

If the running time of an algorithm grows faster than any polynomial
function of the input size, there is little hope of using it to solve large problem
instances. Unfortunately, we can show that no algorithm can compute I"
from T efficiently for general POMDPs, simply because I'V can be exponentially
large with respect to the size of the POMDP.

Theorem 3 There exists a family of POMDPs such that, for every n, |S| =
2n, |Al =1, |Z| =n, |T| =2, and |T’| = 2".

A proof by construction can be found in Appendix A.2.1.

To produce an efficient algorithm for computing IV, we first must rule out
the possibility that I is exponentially large. We can dismiss this possibility
altogether by restricting our attention to POMDPs for which |T’| is polyno-
mially bounded. We call a family of POMDPs polynomially output bounded if
ITY| can be bounded by a polynomial in the size of the POMDP.

No existing algorithm has been shown to run in polynomial time on poly-
nomially output-bounded POMDPs, and the next theorem suggests that there
may be a good reason for this.

Theorem 4 The best algorithm for solving polynomially output-bounded POMDP s
is efficient if and only if RP = NP.

The theorem is proved in Appendix A.3. Its importance is that it links the
problem of exactly solving POMDPs with the question of whether RP = NP,
one of the fundamental open problems in theoretical computer science. This
theorem says that a proof that a given algorithm solves polynomially output-
bounded POMDPs efficiently would constitute a proof that every combinato-
rial problem in a wide and much studied class (ANP) has an efficient ran-
domized algorithm. As the question of the existence of efficient algorithms

for problems in AP has been open for some time, Theorem 4 can be taken
as strong evidence that the problem of solving general polynomially output-
bounded POMDPs is intractable.

We conclude from these results that we must further restrict the class of
POMDPs under consideration if we hope to develop an efficient algorithm. We
say a family of POMDPs is polynomially action-output bounded if 3 ¢ 4 || is
bounded by a polynomial in the size of the POMDP.

The quantity Y ,c4 |T'%| is an upper bound on |I”|, though the bound may
be arbitrarily loose. By focusing on polynomially action-output-bounded
POMDPs, we can solve for IV in polynomial time as long as we can find I'*
in polynomial time for each a € A. We therefore restrict our attention
to polynomially action-output-bounded POMDPs, although other restrictions
might also be useful.

Even in this restricted class of POMDPs, existing algorithms for computing
[are not efficient. Theorem 5 addresses the worst-case running times for
the two algorithms studied in Section 5 and shows that they are not efficient.
In Section 4, we will show that the witness algorithm can solve polynomially
action-output-bounded POMDPs in polynomial time.

Theorem 5 Any algorithm for solving polynomially action-output-bounded
POMDPs that enumerates the vectors in G or the vertices of the linear regions
in Hv takes exponential time in the worst case.

Proof: Several algorithms for finding [V work by enumerating the vectors
in G and then identifying which of these vectors is useful: Monahan’s algo-
rithm [6] was the first and later Eagle [3] and Lark [15] provided improve-
ments. However, all these algorithms, regardless of their details, build G, the
size of which is |A||T'|!?l. Thus, even if a vector could be identified as useful in
constant time, the running times of these algorithms are at least exponential
in |Z|, making them of little use for solving POMDPs with anything but the
smallest observation sets.

Cheng’s linear support and relaxed region algorithms [2] make use of
special-purpose routines that enumerate the vertices of each linear region
of the value function. For polynomially action-output-bounded POMDPs,
the number of linear regions is guaranteed to be small, but the number of
vertices of each region can be quite large. Bounding the number of vertices
in a polyhedron is a well-studied problem and it is known that there can be
an exponential number. In fact, there is a family of POMDPs such that, for

every n, |[S|=n+1, |Al=2n+1,|Z| =1, || =1, |I"| £2n + 1, and the
number of vertices in one of the regions is 2". The construction is given in
Appendix A.2.2. Since visiting each vertex is just one of the operations the
algorithms perform, we can expect the worst-case running time to grow at
least exponentially in n. O

In Section 5, we measure the running time for several of these algorithms
on randomly-generated POMDPs and find that the worst-case analyses qual-
itatively match the average-case running times.

4 The Witness Algorithm

This section describes the witness algorithm for dynamic-programming up-
dates in POMDPs, justifies it theoretically, and analyzes its computational
complexity. The discussion proceeds top down.

At the highest level, the witness algorithm implements Hv by computing
['* for each a € A and creating the set

I = {’yh e |JI* and R(~,|JT?) # 0}.

It follows from Theorem 2 that I is properly defined. The algorithm is given
in Table 1.

Two subroutines still need to be defined. The subroutine inR(y, F') re-
turns an information state x € R(v, F'), that is, an 2 such that v dominates
all other vectors in F' at x. If R(v,F) is empty, inR returns the token
“false.” The subroutine H*(I') computes I'* from T

Table 2 provides a simple routine that uses linear programming to im-
plement inR efficiently. The linear program seeks an = € X such that the
minimum increment of v over the other vectors in F' is as large as possible.
If this increment is strictly greater than zero, then v is useful with respect
to F and « is in R(y, F'). Note that if we assume that all the components
of v and the vectors in F' are specified using rational numbers, the linear
program can be implemented in such a way that the comparison to zero is
well defined.

The witness approach to computing I'* bears a resemblance to Cheng’s
linear support algorithm [2] and Lark’s algorithm [15]. The fundamental
difference is that it does not exhaustively enumerate vectors or vertices. It

H(T) = {

}

foreach a € A
I'*.=H¥(I")
return reduce(U,c4 I'*)

reduce(F) := {

U:=0
foreach v € F

if (inR(y, F') # false) then add v to U
return U

Table 1: The witness approach to computing H.

inR(vy, F) :={

if (F = ()) then return any z € X

Solve the following linear program:
maximize: d
st x-y—x-4' >d forall v € F—{y}
and: Y, 2[i] =1
variables: z[i], d (nonnegative)

if (d > 0) then return «

else return false

Table 2: Subroutine for finding an information state in R(y, F').

10

starts with a set U, initially empty, and brings the vectors of I'*, one by one,
into U, until U = I'*. The steps are as follows:

1. If we can verify that U = I'*, stop and return U.

2. Choose a vector y© € G* — U. If 4% is useful with respect to U, we
can use it to identify a vector in T'* — U.

3. If R(v*,U) =0, return to step 1. Otherwise let = € R(y*,U).

4. Let 4* be the lexicographically maximum vector in G* such that x-v* =
maxyega(2 - 4'). Add v* to U. Return to step 1.

The justification for step 4 comes from Lemma 1, which shows that v* €
I'*. Step 3 can be implemented using the inR subroutine. Care must be
taken in steps 1 and 2, described below, to make sure that the number of
4t vectors tested grows with T'*, not G*. Implementing step 4 directly is
similarly worrisome since it appears to require an enumeration of G*. The
following theorem shows that this is not necessary.

Theorem 6 Let v € X be an information state and a € A an action. Let
g € T and define g(z) = arg maxyer(z-P(z,a)-y) where ties in the “arg max”
are broken in favor of the v such that P(z,a) - is lexzicographically largest.
The vector v* = [r(a) + 8. P(z,a) - g(z)] is useful in the representation of
H% and thus v* € T.

Proof: Starting with Theorem 1 we have

[H*](z) = max(z-7)

= () 4 55 P0) -0

= w-r(a) + 83 max(z - P(z,4)-7)
= a-[r(a)+ B> P(z,a)- g(z)]

= x-v".

Since ¢ is chosen so that P(z,a) - ¢g(z) is lexicographically maximized for
all z, no other element of T can be used to construct a lexicographically

11

useful-g-from-state(a,z,I') :={
foreach z € Z {
maxval := —o0
foreach v € T' {
if (¢ - P(z,a) -~ > maxval) or
((x- P(z,a)-~v = maxval)
and (lexgt(P(z,a) v, P(z,a)-¢g(z)))) then {
maxval :=z - P(z,a) -~y
9(z) =17

return ¢

Table 3: Subroutine for finding a ¢ € 7 that can be used to construct a
useful vector at z.

larger vector while still satisfying the above constraint. By Lemma 1 and
Theorem 2, such a vector is guaranteed to be useful. O

Table 3 provides an implementation of this idea. It uses the subroutine
lexgt(¢,v), which returns true if ¢ is lexicographically greater than .

Finally, we describe a method for limiting the set of vectors that are
selected in step 2 in such a way that the test in step 1 can be carried out
efficiently.

To do this, we first need to introduce a few additional concepts. We call
the elements of 7 tables and say that table ¢g; € T is a neighbor of table
g2 € T if ¢1(2) = go(2) for all but one z € Z. Each table has |Z|(|T'| — 1)
neighbors, which can be enumerated easily.

The next theorem says we only need to examine the neighbors of the
tables that were used to construct the vectors in U to determine whether
U = T'*. Further, if U # I'*, we can use one of the neighboring tables to find
a vector y* ¢ U such that R(y*,U) is non-empty, as required in step 3.

Theorem 7 Let U C T'* be a non-empty set of vectors and assume each
v € U was constructed from g7 € T, that is, v =r(a) + 3. P(z,a) - ¢"(2).

12

Then U # T'* if and only if there is some g € T that is a neighbor of ¢"
for some v € U such that for v* = [r(a) + Y, P(z,a) - g(2)], R(y*,U) s

non-empty.

Proof: The “if” direction is easy since the g can be used to identify a vector
missing from U.

The “only if” direction can be rephrased as: If U # I'* then there is an
information state * € X, a v € U constructed from ¢”, and a neighbor g of
g” such that the vector constructed from ¢ dominates all vectors in U at x.
Figure 2 illustrates some of the relevant quantities used to show this.

Start by picking v* € I'* — U and choose any = € R(y*,U). Let

— . /
v = argmax(z - 7).

As illustrated in the figure, v* is the vector in ['* —U that gives the largest dot
product with =, and v is the vector in U that gives the largest dot product
with . By construction, = - v* > x - ~.

Now choose ¢g* € T such that v* = [r(a) + 3. P(z,a) - g*(2)]. As indi-
cated in the figure, v* could be constructed from ¢*, and v was constructed
from ¢”. If ¢* and ¢ are neighbors, we are done, since we are searching for
a neighbor of ¢ that can be used to construct a vector that dominates the
other vectors in U at z, and ¢* meets these requirements.

If g* and ¢” are not neighbors, we will identify a ¢ € T that does satisfy
these requirements. Choose an observation z* € Z such that

z-P(z"a)-g"(z") > a-P(z"a) - g"(2")

There must be a z* satisfying this inequality since otherwise we get the
contradiction

vyt = afr(a) +BY_Plza) g'(2)]
< z-[r(a)+BY Plza)-g'(z)] =z -9

Define g(z*) = ¢*(z*) and g(z) = ¢"(z) for z # z*. Let 4% be the vector
constructed from g,

vH =[r(a)+ B> P(z,a)- g(2)].

13

a
y*er - U constructed from & *
value
' , constructed from 8

Y
Y €U constructed from &

X
X

Figure 2: An illustration of some of the quantities used in Theorem 7.

Because ¢(z) = ¢7(z) for all but one value of z, g is a neighbor of ¢7. In
addition,

vyt = aer(a)+ B Plz,a) g(2)]

r(a) + 5 (Z P(Zva) '97(2) + P(Z*va)) g*(Z*))]

zFz*

> a-[r(a)+ B3 P(z,a)-g"(2)] = 27 = max(z -y).

Therefore the vector 4% constructed from g dominates all other vectors in U
at x. U
Once 4% is identified, it serves as proof that U can be improved upon at
the information state . We can then use useful-g-from-state to construct
a vector v* € I'* to include in U.
Table 4 provides a procedure that uses the insights discussed above to
compute ['* from I'; its fundamental steps are

e maintain a set unchecked of tables that might lead to useful vectors,
e construct the vector 4T for some table ¢ from unchecked,

find an information state z, if any, where y* dominates all the vectors

in U,

find the best table, ¢*, for x,

e construct the vector v* for ¢*,

14

H3(T) :={
U:=0
unchecked := {any g € T}
while (unchecked #) {
g := any element of unchecked
T = [r(a) + 5. P(.0) - g(2)
r:= inR(y*,U)
if (x # false) then {
g* := useful-g-from-state(a,z,T’)
T o= (@) + 5, P(210) - g7(2)]
add v* to U
add neighbors of ¢* to unchecked

}

else remove ¢ from unchecked

}

return U

Table 4: The witness approach to computing I'*.

o add v* to U and the neighbors of ¢* to unchecked and repeat.

Because of Theorem 7, the set unchecked need hold only the neighbors of
the useful tables discovered thus far. The following theorem shows that the
resulting algorithm is efficient.

Theorem 8 The witness algorithm runs in polynomial time on polynomially
action-output-bounded POMDPs.

Proof: In computing I'*, the total number of tables added to unchecked is
equal to the number of neighbors of the tables used to construct the vectors
in I'* plus the arbitrarily chosen starting table, specifically, 1 + |Z|(|T'] —
1)|T*|. Each pass through the “while” loop either consumes an element from
unchecked (1 + |Z|(|T'| — 1)|T'%| times) or adds a vector to U (|['*| times).
Thus, the total number of iterations in H* is

L+ [Z|(IT] = DT] + T

15

The statements in the loop in H* can all be implemented to run in poly-
nomial time; this includes inR, since polynomial-time algorithms for linear
programming with polynomial-precision rational numbers exist [10]. The to-
tal running time of H* is therefore bounded by a polynomial in |S|, |Z], | 4],
IT'| and |T'%].

The H routine calls H* for each @ € A and then calls inR once for each
vector found. For polynomially action-output-bounded POMDPs, this implies
that the total running time is polynomial. O

5 Empirical Results

The theoretical analyses leave open the issue of average-case performance
and, for the witness algorithm, this includes the relationship between Y, [T'?|
and |T”]. In particular, are typical POMDPs polynomially action-output bounded?
Also, the analyses ignore low-order terms, which might dominate the running
time for small POMDPs.

In this section we empirically compare the witness algorithm to Cheng’s
linear support algorithm [2, 5] and Lark’s enumeration algorithm [15]. We
chose the linear support algorithm because it has been shown to outperform
Sondik’s one-pass algorithm and Cheng’s relaxed region algorithm on a vari-
ety of POMDPs [2] and appears to be the leading exact algorithm. We chose
Lark’s enumeration algorithm because it seems to be the leading enumeration
algorithm; in principle it should always outperform Monahan’s algorithm,
and did so in all our early experimental trials.

Our comparisons use CPU time as the measure of performance. Computer
architectures, languages, operating systems, programming skill and other fac-
tors can combine to mask important algorithmic differences between different
implementations. In an effort to minimize these effects, we used identical im-
plementations for common subroutines wherever possible, ran all experiments
on the same computer system, and took care to ensure there were no obvi-
ous inefficiencies in the programs. All experiments were performed on Sun
Sparcstation 10 workstations running code written in the C language for the
Solaris operating system. The code was compiled using the GNU C com-
piler (no optimization) with library calls to the CPLEX linear programming
package.!

"We include implementation details for the sake of completeness and replicability.
No recommendation of a particular software package or computer system is implied or

16

Another practical concern is the precision of the machine arithmetic. In
all programs, we use the same tolerance of 107 for equality comparisons,
such as the comparison with zero in inR. Though this does not guarantee that
each algorithm will produce answers with exactly the same precision, none of
the algorithms seemed to suffer from precision problems in the experiments
reported here.

We will show how the three algorithms perform as we vary the num-
ber of system states and observations. Our preliminary experiments showed
that, for the sizes of POMDPs we examined, the number of actions and previ-
ous vectors do not influence the running times of these algorithms nearly as
much as do the number of system states and observations. The size of IV is
not directly controllable, because it depends upon all of the input parame-
ters. Instead of restricting our experiments to polynomially output-bounded
POMDPs, we chose to view the size of I as part of the POMDP instance itself;
the results reported are averages over experiments with varying sizes of I".

We tested the algorithms on randomly generated POMDPs because there
are very few standard POMDPs in the literature and because we wanted to
explore how the running time of the algorithms scaled with POMDP size.
Additionally, using randomly generated POMDPs allowed us to run the al-
gorithms on many different POMDPs of the same size, which helped smooth
out the effect of the varying size of I”. It is certainly possible that the
kinds of POMDPs that are of practical interest will exhibit different empirical
complexity than these randomly-generated ones, perhaps due to structure in
the transition matrices or properties of the immediate rewards. This topic
deserves more attention.

Random POMDPs were constructed by independently generating random
probability distributions for each row of the transition and observation ma-
trices. A random distribution was generated by selecting a point uniformly
at random from the (|S| — 1)-dimensional simplex.? The immediate rewards
for each action-state pair were set uniformly at random to values between
0.0 and 10.0.

In our experiments we kept the number of actions and the number of
initial vectors fixed, |A| = 4, and |I'| = 10. The latter were constructed
by adding randomly generated vectors to the set until there were ten use-
ful vectors. Our experiments consisted of performing a single dynamic-

intended.
2We thank John Hughes for pointing out how to do this.

17

programming update on each POMDP.

Our data are presented as a three-dimensional surface, where the height
of the surface is the average computation time of the algorithm, in seconds.
Figure 3 shows the results; running time is plotted against the number of
system states and the number of observations. Each data point for a POMDP
size 1s the average running time of the algorithm on 20 independent random
POMDPs of that size. An experiment was terminated if it took more than
7200 seconds (2 hours) and that value was used as the computation time
when computing an average.

These average-case empirical results match the theoretical worst-case
analysis extremely well at a qualitative level. The performance of the linear
support algorithm deteriorates rapidly as the number of system states in-
creases, nearly independent of the number of observations. The enumeration
algorithm suffers the same problem, except the deterioration increases dra-
matically with observations instead of the system states. Only the witness
algorithm consistently found solutions over the entire range of POMDP sizes
we tested.

It is important to note that this data does not support the use of the
witness algorithm for all POMDP instances. When there are fewer than four
system states, the linear support algorithm appears to be the superior tech-
nique and when there are fewer than six observations, Lark’s enumeration
algorithm appears fastest. However, outside these ranges, our experiments
indicate that the witness algorithm is likely to give the best performance.

The scale of the graph in Figure 3(c) does not provide a comprehensive
view of the shape of the performance graph for the witness algorithm, since
the saturation point of 7200 seconds has not yet been reached. Figure 4
shows the average running times over a larger range of system states and
observations, where each data point is the average of 9 independent exper-
iments. The results indicate that, as long as |S| 4+ |Z| < 22, the witness
algorithm is able to provide results within the allotted time.

The theoretical analyses show that the the witness algorithm is efficient
for computing the I'* sets, but can be inefficient for computing V. Therefore,
it is of interest to explore the relationship between Y-, |T'%| and |IV]. Using
the same experiments as were used for the data of Figure 3, we collected
statistics on the ratio between Y, |I'*| and |IV|. We found the mean to be
2.65 with a variance of 3.74, giving some support to the idea that randomly
generated POMDPs are polynomially action-output bounded. An important
open question is whether this is true of typical POMDPs.

18

Cheng Algorithm Lark Algorithm

6000
Time 000

2000

states states

Observations Observations

(a) Cheng (b) Lark

Witness Algorithm

states

Observations

(c) Witness

Figure 3: Running times of the three algorithms over a range of POMDP sizes.

19

Witness Algorithm

15

States

Observations

Figure 4: Running times of the witness algorithm over a larger range of
POMDP sizes.

6 Conclusions

Attention to complexity theory has led us to a more practical approach to
performing dynamic-programming updates in POMDPs with piecewise-linear
convex value functions. The algorithm itself is almost as easy to implement
as Monahan’s algorithm, requiring only basic matrix manipulation and a
standard linear-programming solver. The algorithm outperformed the best
known algorithms on a suite of randomly generated POMDPs of various sizes.
Although the existing implementation is reasonably efficient, improved im-
plementations that take advantage of sparsity in P(z,a) and that halt linear
programming when a feasible solution is found would undoubtedly improve
performance substantially.

We have applied our algorithm in the context of a value-iteration pro-
cedure for approximating optimal infinite-horizon policies. We have solved
problems in a variety of domains, taken from the operations research, ar-
tificial intelligence, and machine learning literatures. Although it is known
that solving multi-stage POMDPs is computationally intractable [7], we have
found that we are often able to compute exact answers or reasonable approx-
imations to larger POMDPs than have been reported elsewhere [1, 4].

20

Nevertheless, these exact algorithms do not appear to be practical for
moderately large problems, and even small problems can exhibit explosive
growth of the number of vectors in successive iterations. Our current work
tries to overcome these difficulties using approximate representations of the
infinite-horizon value function [4, §].

A Appendix

A.1 Proof of Lemma 1

Given an information state = and a set of vectors F, let 4* be the lexico-
graphic maximum vector in F' such that = - v* = max,ep(2 - v). Lemma 1
asserts the existence of an 2’ such that 2’ € R(~*, F'); that is, v* dominates
all other vectors in F' at .

To show this formally, we need some additional notation. Information
state x is a p-step from xy towards x5 if @ = p(axs —21) + 21, 0 < p < 1. Let
e; be the vector corresponding to the “corner” of X where all the probability
mass is on system state 1 € 9.

Lemma 2 Let W ={y € Flz -~y > x -+ for all ¥ € F}; that is, W is the
set of vectors in F that dominate those in FF — W at x. For all1 € S, if
x # e;, there is a value p > 0 such that for the information state x’ that is a
p-step from x towards e;, the vectors in W still dominate those in F — W.

Proof: For any y € W and any v/ € F — W, define A=z -y —a-49" > 0.
Let ' = p(e; — x) + . We can find a value for p > 0 such that v is bigger
than 4" at 2’. The following statements are equivalent:

!/

ey > a-y
(plei =)+ x) -y —(plei —2)+2)-% > 0
QI=p)z-y—z-9)+pleiry—e-7) > 0
(1=p)A+p(y[i] =~ > 0
p(A+7T]=Al]) < A

Since A > 0, we can divide by it without changing the inequality. Let
k=14 (v[i] = ~[7])/A. Then the above expression is equivalent to pr < 1.
If k <0, the inequality holds with p < 1. Otherwise, we can set p < 1/(2k)
to satisfy the inequality.

21

This shows that for every i, we can find a p > 0 for each pairing of vy € W
and 4" € F — W such that a p-step from = towards e; gives an 2’ such that
2’ -y > a'-~'. Since there are a finite number of ways of pairing elements in
W with those in F' — W, there is a p > 0 that works for all pairs (namely,
the minimum p for any pair). O

We can now use Lemma 2 to prove Lemma 1. The plan is to take suc-
cessive p-steps from z towards each corner e;. Each step is small enough so
that the lexicographic maximum vector in W still dominates the vectors in
F — W, but large enough so that some ties within W are broken.

Let Wy = W be the set of vectors maximal at xg = z. By Lemma 2,
there is an information state, xy, strictly different from ¢ if 29 # €o and in
the direction of ey at which the vectors in W are still bigger than the others.
Let Wi be a subset of Wy consisting of the vectors maximal at z1. If g = e,
let W, = Wo.

It should be clear that the vectors in Wy are precisely those v € W, for
which 4[0] = ~*[0], that is, those tied with the lexicographically maximal
vector in the first component.

If we apply this argument inductively for each component, W; becomes
the set of all vectors in W that agree with +* in the first + components. The
vectors in W; dominate the vectors in F' — W, at ;. After every component
has been considered, we are left with Wig; = {7*} with 7* as the unique
vector dominating all others in F' at z|g).

A.2 Constructed POMDPs

This section provides POMDP constructions that illustrate various important
POMDP issues. We first define an alternate representation for piecewise-
linear convex functions, prove that any function represented in this way is
also the solution to a POMDP of similar size, and finally use the alternate
representation to show the existence of POMDPs with particular properties.

Recall that to specify a POMDP dynamic-programming-update problem,
it is necessary to define sets S, Z, and A; matrices P(z,a) for z € Z and
a € A; vectors r(a) for a € A; a scalar 3; and a set I' of |S]-vectors. The set
[is the minimum set of vectors such that

max(z - y) = maxmax(z - [r(a) + 3> P(z,a) - g(2)]), (1)

~yeT! a€A g€eT

for all x € X, where T is the set of all functions mapping Z to I'. We write

22

v(x) = maxyer(x - v) and [Hv](x) = maxyer(z - y). The Z, A, P, r, 3, and
I' quantities define the set I, and so can be viewed as a specification of a
piecewise-linear convex function over the (|S| — 1)-dimensional simplex.

We would like to be able to show that there are values for Z, A, P, r,
B, and T' such that piecewise-linear convex functions with particular qual-
ities exist. Because POMDP specifications can be cumbersome, we restrict
ourselves to a subset of the piecewise-linear convex functions resulting from
dynamic-programming updates in POMDPs. We show that by specifying a
finite set of |S|-vectors K, and a finite set of pairs of |S|-vectors A with
components between zero and one, we can specify a piecewise-linear convex
function that is the solution to a POMDP update, without needing to identify
Z, A, P,r, 3, and T' directly.

Let K be a set of |S|-vectors. Let V' be a finite set of variables, and B
be the set of all bindings mapping the elements of V to {1,2}. Let A be a
set of |S|-vectors, A = {Aj|z € V,k € {1,2}}. The sets K and A specify a
piecewise-linear convex function over X by

F(x) = max{max(a - o), ma(z -)},

where we define ap = Y..cv Ay, for b € B.

The next theorem shows that any piecewise-linear convex function that
can be specified this way can also be specified as the solution to a dynamic-
programming update on some POMDP.

Theorem 9 Given two sets of |S|-vectors (|S| > 3), K and A = {)\j|z €
Vik e {1,2}} (0 < Xj[i]) £ 1,Vi € S), there is a POMDP dynamic-programming-
update problem such that

rvneelgc(x cy) = max{gnez%(x o), ml;ax(:zj ap) }

The POMDP has |Z]| = |V|, |A| = |K|+ 1, and |T'| = 2.

Proof: The high-level idea is that there will be one action for each vector
in K, with immediate rewards equal to the individual vectors in K. The ay
vectors will be formed by combinations of the vectors in I'; a binding b € B
is analogous to a table 7 € T.

We now define the POMDP in detail. The set of observations is the set
of variables Z = V' there is one action for each vector in K and one cor-
responding to the A set, so A = {a,|c € K} U {aog}. Let T' be a set of two

23

|S|-vectors, 1 and 7, and let 8 = 1. Define +;[¢] = 2|V|, for ¢ € {1,2}, and
0 otherwise.

For each o € K, the a, action results in an immediate reward of ¢ and
a transition to system state 3 (which has zero value under T'): for all i € S,
r(ay,)[i] = o[i] and P(z,a,)[i,7] = 1 if j = 3 and zero otherwise. Since

[3] =0, forall g € T,

v [rlar) + BY P(z,a,) - g(2)] = 2 - . (2)

The ag action yields an immediate reward of zero and then causes a
transition to system state 1, 2, or 3, under observation z, weighted accord-
ing to the appropriate A vector. Specifically, r(ao)[t] = 0, for all 1 € S
and P(z,a0)[i,j] = Xi[i]/(2|V]) for j € {1,2}, P(z,a0)s,3] = (1/|V| —
A1)/ (2|V]) — A3li]/(2]V])), and O otherwise. The P matrices are valid since
each component is non-negative and for each i and a, >, Y, P(z,a)[i, j] =
XV =1

The linear facets for action ag correspond to the oy vectors in that

max(z - [r(ao) + 8 P(z,a0) - g(2)])

g€T
= max(z- [P(z,a0) - (-]

beB

= rglean(Z(x[i]ZZP(Zaao)[ivj]Vb(z)[j]))

= max(}_(«[i] >_(P(z, a0)li, Uy [1] + P(2, a0)[i, 25 2] + P2, a0)[i, 315 [3])))

= rll)qean(Z(x[i] Z Ab(2) [1]))

= rgleaBX(x cap) .

Combining Equations 1, 2, and 3, we have

max(z -y) = maxmf%z((:li [r(a) + ﬁz P(z,a)-g(2)])

~eT” a€A g€

= max{max(s - o), max(z - o)} .

therefore the supplied vectors correspond exactly to the set of vectors ob-
tained by performing a dynamic-programming on the given POMDP. O

24

(3)

A.2.1 Proof of Theorem 3

We want to show that there exists a family of POMDPs such that, for every
n, |S|=2n, |A| =1, |Z| =n, |T'| =2, and || = 2".

We use the specification described in Theorem 9. Let S = {1,...,2n},
and V ={1,... ,n}. For z € V, and k € {1,2}, let A\j[2z + k — 2] = 1, and
0 otherwise. Let K = (). By Theorem 9, there is a POMDP with |A| = 1,
|Z| = n, and || = 2 such that G = Uyep{X. Aj(.)}. Note that |G| = |B| =
2Vl = 27 We know that the set I” is a subset of G. We can show that, in
fact, these sets are equal since every vector in G dominates all other vectors
in G at at least one z € X.

Lemma 3 In the construction just described, for every b € B there is an
r € X such that x - ap > x - ap for all b’ #b.

Proof: For a binding b, for each z € V, let 2[2z 4+ b(z) — 2] = 1/n and 0
otherwise. Note that © € X. Now, for any b’ € B,

Ty = T- Z)\Z,(Z)

= Z(l'[@] XZ:)\Z’(z) [])

= Z Z(l'[i])‘gf(z) [])
= > z[2z+V(z) - 2]

z

= Z 1/”7

z:b/ (2)=b(z)

which is uniquely maximized for & = b. O
Theorem 3 follows easily.

A.2.2 Example with an exponential number of vertices

We want to show that there is a family of POMDPs such that, for every n,
|IS|=n+1, |[A|=2n+1,|Z]| =1, || =1, |I"| <2n+1, and the number of
vertices in one of the linear regions of Hv is 2.

Once again, we will use the specification described in Theorem 9, induc-
tively creating a separate piecewise-linear convex function for each n. For
each n, we define a set K, containing 2n + 1 vectors, and we construct a

25

vector ¢” such that the vectors in K,, form the walls of an n-dimensional
hypercube bounding the region R(o", K,,). We define the family of POMDPs
recursively, starting with n = 1. Let Sy = {1,2}, and V = {1}. Let \{[;]] =0
forall z € V, k € {1,2}, and i € S (the set A is not needed in this construc-
tion). We use the notation (x,y) to concatenate two vectors (or a vector and
scalar) into a single vector.

Let Ky = {({1,-1/2),(0,0),(—1,0)} and o' = (0,0). Let €, be the set

of extreme points of the region
{z|lz - 0" > 2 0,0 € K,}.

The extreme points are the information states where one of the other vectors
in K, gives the same value as o'. It is easy to verify that

Ql = {<07 1>7 <1/37 2/3>}
Inductively define o' = {(¢", 0),
Kop1 ={{(0,0) : 0 € K,}U{{0,...,0,=1),(1,...,1,—-1)}

and S, = S, U {n + 2}.

Note that o' =(0,...,0) € K,1. The extreme points of 6"!’s region
are the information states where n + 1 of the vectors in K, give the same
value as o"*!. Let 2 € Q,,. Inductively, n vectors in K, give the same value
as o™ at x. Let o be any one of these vectors. It follows from the construction
of o that

(,0) - (0,0 =2-0=0=2x-0" = (2,0) - o"!
and
(,0)-(0,...,0,—1) =0 = {x,0) - o™,

n+1»

so (x,0) € X is an extreme point of o"*!’s region. Similarly,

(1/2 2,1/2) {0, 0)=1/22-04+0=0=(1/2 2,1/2) - o™t
and
(1/22,1/2) - (1,...,1,-1)=1/2-1/2=0=(1/2 2,1/2) - ",

so (1/2 z,1/2) € X is an extreme point of ¢"t!’s region also. This means
we can write

Qs = {{2,0) 2 € Q,}U{(1/2 2,1/2) : 2 € Q, }.

26

Since all the vectors in K,y and Q,4 are unique, |K,| = 2n + 1 and
|2,| = 2". Applying Theorem 9, there is a POMDP for each n with |S| = n+1,
|Al=2n+1,|Z| =1, |T| =1, |I'| = n+1, such that the number of vertices
in one of the linear regions of Hv is 2".

A.3 Proof of Theorem 4

We want to show that the best algorithm for solving polynomially output-
bounded POMDPs is efficient if only if RP = NP. To do this, we show a
deep connection between this problem and the unique-satisfying-assignment
problem, defined below.

A boolean formula in conjunctive normal form (CNF) is an “and” of a set
of clauses where each clause is a set of “ors” of variables and negated vari-
ables. A satisfying assignment maps each of the variables to either “true” or
“false” so the entire formula evaluates to “true.” There is a corollary, proved
by Valiant and Vazirani [14], that implies that there exists a polynomial-time
algorithm for finding a satisfying assignment for a formula that is guaranteed
to have at most one satisfying assignment only if RP = NP, a long-open
problem.? We can show that a polynomial-time algorithm for solving polyno-
mially output-bounded POMDPs could be used to solve the unique-satistying-
assignment problem in polynomial time (and vice versa), and therefore that
such an algorithm exists if only if RP = NP.

We make use of the specification defined in Theorem 9 and define 5, V,
K, and A. Take a CNF formula consisting of a set of M > 1 clauses C,
and variables V. The set of variables corresponds both to the variables in
Theorem 9 and the boolean variables in the formula. Let S = C x V. We
write a system state as (¢,z) € C x V. There is a pair of A vectors for each
variable z € V, which will encode the formula. Vector A} indicates in which
clauses variable z is unnegated and A} indicates in which clauses variable z
is negated. More specifically, for each z € V and k € {1,2}, Aj isa |C x V|-
vector with Af[(¢,z)] = 1 if variable z appears unnegated in clause ¢ and
Asl(c, z)] = 1 if variable z appears negated in clause ¢. All other components
of the A vectors are zero.

For a binding b € B, b(z) = 1 if variable z is true in the assignment
and b(z) = 2 otherwise. Thus, if)\g(z)[(c,z)] = 1, then clause ¢ evaluates to
“true” under binding b because of the binding of variable z in that clause.

3We thank Avrim Blum for pointing this out to us.

27

Let & be a |C x Vl]-vector with each component equal to (M —1/2)/M. For
each ¢ € C, we define a |C x V|-vector ., as follows. For all z € V, let
o(e,2)] =14 (M —1/2)/M — M and o.[(c,2)] =14+ (M —1/2)/M for
c # c. As described earlier, let ap, = 3,)\g(z). From the definition of A, every
component of oy is either a one or a zero.

Each a3 vector corresponds to an assignment and the o, and & vectors
are designed to jointly dominate all possible a3 vectors, except those corre-
ponding to satisfying assignments.

Lemma 4 Let K = {k}U{o.|c € C}. There is an v € X such that x - op >
maXyex (2 - o) if and only if b is a satisfying assignment.

Proof: First, assume b is a satisfying assignment. We can construct an z*
such that 2* - a = 1, but 2* -k < 1 and 2* - 0. < 1 for all ¢ € C as follows.

For each clause ¢ € C, pick a single variable z. such that the binding of
that variable in b causes clause ¢ to be satisfied. Let 2*[(¢,2.)] = 1/M for
each ¢ € C and 0 otherwise. Note that #* € X because M components are
set to 1/M. Because of the zeros in 2* and the A vectors,

o = DY at(e,2)] Z A l(e,2)]
= S le 2N le2)]
= Yol Wil) = Y1 = L

C

Using the same 2* we see that 2*-x = (M —1/2)/M < 1, and for each
clause ¢ € C,

o, = Y Z: ¥ [(d, 2)]o[(d, 2)]

_ Z (—Mx*[(c,z)] + ;x*[(a,z)] (1 fcMM 5))
= g (142 %)g;x*ucczn
— 141+ A;%:Mﬁfa

Thus, 2* - ap = 1 > max,ex(r* - o), for satisfying assignment b.

Now we can show that, for a non-satisfying b, - oy, < max,ex (@ - o) for
all z € X. We proceed by contradiction. Assume we have an x € X such
that max,ex (2 - o) < x - ap for a non-satisfying b. Then, z -k < z - a3 and
-0, < x-opforall ¢ € C. Define w. = Y, 2[(¢, z)]. We call w, the weight
of clause ¢, and note that >, w. =1 if x € X. Let ¢ = arg min. w,; ¢* is a
minimum weight clause.

ok <a-op, then (M —1/2)/M <z-op =2-[%,)\g(z)] < 1—we. The
last inequality is justified by the fact that b is not satisfying so at least one
clause contributes zero to the dot product and assuming it is the smallest
weight clause gives us the largest possible value. This restricts w.« so that

< Lot t . M- (4)
—2M T 2M 2(M—1) M(M-1)

Wer

At the same time, it must be the case that = - o« < - oy which implies
1+(M—1/2)/M — Mwex < 1—we and therefore wex > (M —1/2)/(M(M —
1)). This directly contradicts Inequality 4, and therefore we can conclude
that, for a non-satisfying b, = - ap, < max,ex (2 - o) for all x € X. O

By Theorem 9, there is a POMDP such that

rvneelgc(x - v) = max {gl&f{(x o), ml;ax(:zj : ab)} .
This POMDP is derived from the unique-satisfying-assignment-problem in-
stance and has the property that I € K if and only if the boolean formula
instance is satisfiable. Because we assumed the boolean formula has no more
than 1 satisfying assignment, |I| < M + 2; thus, the POMDP is polynomially
output bounded.

Because the POMDP can be created in polynomial time, and the condition
[K can be checked in polynomial time, a polynomial-time algorithm for
solving polynomially output-bounded POMDPs could be used to find unique
satisfying assignments in polynomial time. As mentioned at the start of this
section, this would imply RP = NP.

To complete the proof of Theorem 4, we need to argue that if RP = NP
then there is a randomized polynomial-time algorithm for solving polyno-
mially output-bounded POMDPs. We can build up a set of vectors U C I
one at a time by answering the question “Is there an information state z
such that maxyep -y # [Hv](2)?” and adding the dominating vector at

29

x into U. For polynomially output-bounded POMDPs, if the answer to this
question is yes, then there is an z that can be written using polynomially
many bits. Such an x can be identified in non-deterministic polynomial time
using standard techniques, and therefore in randomized polynomial time if
RP = NP. Because there are at most a polynomial number of vectors that
can be added to U, the process terminates with U = I'" in polynomial time.

Acknowledgements

This work was supported in part by NSF grants IRI-9453383 and TRI1-9312395
and Bellcore. The authors would like to thank John Hughes, Avrim Blum,
and Philip Klein for their contributions to this work.

References

[1] Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman.
Acting optimally in partially observable stochastic domains. In Pro-
ceedings of the Twelfth National Conference on Artificial Intelligence,
Seattle, WA, 1994.

[2] Hsien-Te Cheng. Algorithms for Partially Observable Markov Deci-
ston Processes. PhD thesis, University of British Columbia, British
Columbia, Canada, 1988.

[3] James N. Eagle. The optimal search for a moving target when the search
path is constrained. Operations Research, 32(5):1107-1115, 1984.

[4] Michael Littman, Anthony Cassandra, and Leslie Pack Kaelbling. Learn-
ing policies for partially observable environments: Scaling up. In Ar-
mand Prieditis and Stuart Russell, editors, Proceedings of the Twelfth
International Conference on Machine Learning, pages 362-370, San
Francisco, CA, 1995. Morgan Kaufmann.

[5] William S. Lovejoy. A survey of algorithmic methods for partially ob-
servable Markov decision processes. Annals of Operations Research,

28:47-66, 1991.

30

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

George E. Monahan. A survey of partially observable Markov decision
processes: Theory, models, and algorithms. Management Science, 28:1—
16, January 1982.

Christos H. Papadimitriou and John N. Tsitsiklis. The complexity
of Markov decision processes. Mathematics of Operations Research,

12(3):441-450, August 1987.

Ronald Parr and Stuart Russell. Approximating optimal policies for par-
tially observable stochastic domains. In Proceedings of the International
Joint Conference on Artificial Intelligence, 1995.

Katsushige Sawaki and Akira Ichikawa. Optimal control for partially
observable Markov decision processes over an infinite horizon. Journal
of the Operations Research Society of Japan, 21(1):1-14, March 1978.

Alexander Schrijver. Theory of linear and integer programming. Wiley-

Interscience, New York, NY, 1986.

Richard D. Smallwood and Edward J. Sondik. The optimal control of
partially observable Markov processes over a finite horizon. Operations

Research, 21:1071-1088, 1973.

Edward Sondik. The Optimal Control of Partially Observable Markov
Processes. PhD thesis, Stanford University, 1971.

Edward J. Sondik. The optimal control of partially observable Markov
processes over the infinite horizon: Discounted costs. Operations Re-

search, 26(2), 1978.

L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique
solutions. Theoretical Computer Science, 47(1):85-93, 1986.

Chelsea C. White, III. Partially observed Markov decision processes: A
survey. Annals of Operations Research, 32, 1991.

Chelsea C. White, IIT and William T. Scherer. Solution procedures
for partially observed Markov decision processes. Operations Research,

37(5):791-797, September-October 1989.

31

