Incremental Pruning - Technical Notes

Anthony R. Cassandra
January 6, 1997

Abstract

This paper provides analyses and discussions on the Incremental Pruning 1P algorithm for solving
POMDPs exactly.

1 Introduction and notation

The cross-sum of two sets of vectors is the set of all possible combinations of a vector from the first set and
a vector from the second set. We we denote this operation with the operator ¢.

The sets S¢ are the transformations of the previous step’s (¢ — 1) value function planes for action a and
observation z. It is the value of a belief state at time ¢ of following the ¢ — 1 policy given that we perform
action a and observe z. We assume discounting, if present, is incorporated into these values.

The Incremental Pruning algorithm (1P) does incremental cross sums on the S? sets. There are a number
of ways to do the cross sums and a number of ways to decide on the cross-sum ordering. These will all be
discussed in this paper.

We have two methods for doing the individual cross-sums. The normal version just cross-sums and does
normal Lark filtering; T call this Normal Cross-Sum (Nc¢s). The other variation, Restricted Region (RR),
tries to be a bit smarter about generating vectors in the cross-sum.

For both cross-sum variations we can use the save-a-point option. This uses a set of points to help
initialize the set of vectors we are trying to produce. The Ncs with the save-a-point option, is denoted by
Ncs-sp. For RR, we assume we always save a point. Since there is no extra cost is acquiring a point and
since each point saves an LP, considering the case of RR without saving a point is pointless.

We will analyze the variations from botom to top, so that each analysis can build on the others. We
will use two types of analysis throughout: total number of linear programs, Lps; and total number of LP
constraints.

Some of the comparisons compare average case, some best case and some worst case. I am a little leary
of a direct comparison of any of these. Comparing one worst case agains another worst case may not be that
valid, especially if one of the worst cases is not even achievable. I should distinguish between achievable and
unachievable best and worst cases, since this seems important.

2 LP analysis of Lark’s filtering algorithm.

All the cross-sum variations require the lark filtering algorithm in some form. The Lark filtering algorithm
takes two sets as input: the set of useful vectors and the set of vectors to be filtered. The set of useful vectors
could be empty or could be initialized with any number of vectors. We break the analysis of this algorithm
into three parameters and the complexity is defined in terms of these. The first parameter is I which is the
size of the initial set. The second parameter is U, which is the number of vectors to be filtered that will not
be in the final solution. The last parameter, Y, is the number of vectors to be filtered that are useful.

2.1 Lark filtering - total LPs

The number of LPs is easy to determine, it is U + Y, since we must set up one LP for each vector that needs

to be checked.
LFips(ILUY)=U+Y (1)

This is the same for best, worst, average and any other case you could devise.

2.2 Lark filtering - total constraints

There are at least three ways to analyze this: worst case, best case and average case. I ignore the number
of variables, since it is the same for a given problem (i.e., the number of states). Tt is tempting to ignore
the simplex constraint, since it is only one constraint and is common to all the cases, but many the different
algorithms may require differing number of LPs. This means that one algorithm would be ignoring more
constraints than another, which means that it is necesary to include the simplex constraint in our analyses.

There is also the non-negativity constraint on all variables, but this it not usually something that needs
to be explicitly stated in the LP. In fact, it is usually necessary to go out of your way if you want the variables
to assume negative values.

2.2.1 Lark Filtering - total constraints - best case

Since the number of constraints in an LP is directly related to the number of vectors we started with, I, and
the number of useful vectors found so far, the best case is when all of the I initial vectors dominate all of the
useless vectors and we happen to selected all the useless vectors before processing the useful vectors. This
keeps the size of the LPs as small as possible for as long as possible.

We start with I vectors, so our first LP will have this many constraints plus the one simplex constraint.
In addition, all LPs up until we find our first useful vector will have this number of constraints. After that,
all subsequent LPs will be one constraint larger than the previous as we add more and more useful Lps.

U Y
LPhest(LUY) = > (T+ 1)+ > (T +1)
i=1 i=1

=1V +UT+1)+ LY; D (2)

This is the best case total number of constraints over all LPs in a single application of the Lark filtering
algorithm.

We note that if I = 0, the best case of eqaution 2 is not actually achievable. In this case, the first LP is
guaranteed to find a point that leads to a useful vector. Thus

LFbest(Oa Ua Y) =1 + LFbest(la Ua Y — 1)

U Y-1
=1+> 2+ > (i+1)
i=1 i=1

:Y—I—2U—|—# (3)

2.2.2 Lark Filtering - total constraints - worst case

When we happen to select all the useless vectors after all the useful vectors, then when we get to the useless
vectors the LPs are as large as they possibly can be, thus worst case. Note that this is more likely than the
best case, since the best case requires not only that we select all the useless vectors first, but also that the
initial set of NV vectors completely dominate all the useless vectors.

The main difference between this and the best case, is the summation for the number of constraints in
the LPs processed for the useless vectors.

Y U
LFworst(LUY) =D (T 4i)+ Y (T+Y +1)
i=1 i=1

=UY 4+ 1Y +U(I+1)+ LY; D (4)

The worst case is just the best case number of constraints plus an extra UY constraints.

2.2.3 Lark Filtering - total constraints - (unrealistic) average case

Discussion of the average case has to begin with exactly what is the average case. For this, I assume that at
any given step, each of the remaining vectors are equally likely to be chosen; we either choose a useful or a
useless vector. However, here we also make the unrealistic assumption that when we select a useless vector,
it is completely dominated by all the vectors we have already found. See section 2.2.4 for discussion of the
more realistic case.

Therefore, given these assumptions, the size of the subsequent LP in the sequence of 1.Ps will depend upon
whether we selected a useful or useless vector. We simply weight each by the probability of selecting each
type of vector. This is easily stated with the recurrence:

. . u . Y .
LFave(t,u,y) =24+ 1+ —C(t,u—1,y) + —C(i+ 1l,u,y—1
(i, u, y) el v+ 5! y—1)

with base cases:

LFave(7,0,0) =0
LFave(iaan) =i+ 1+ C(Z+ 1,0,y — 1)
LFave(i,u,O) =1+1+ C’(z,u - 1,0)

Since the worst case is just the best case plus some number of constraints, we would expect the average
case to have the same structure. By comparing the best case to the average case empirically, we were able
to deduce that the average case number of constraints was exactly halfway between the best case and worst
case. In other words the closed form for this recursion is

Uy YV +1
LRave(ILUY) = == + 1V + U(I +1) + % (5)
which can be verified inductively (see appendix A). This is somewhat surprising, since we mentioned
that the worst case and best case were not equally likely.

2.2.4 Lark Filtering - total constraints - average case

To more accurately define the average case, we need to consider, not whether we select a useful vector or
not, but whether we select a vector that leads to a useful vector. Note that a useless vector can lead to
finding a useful vector, if the useless vector is not completely dominated by vectors already in the list, since
it will give us a point with which we can get a useful vector.

The problem with such an analysis is that the order we select vectors and shape of the value function
becomes very important and hard to define. We would need to say something about the probability that
we select a vector that leads to a useful vector and this would involve saying something about distributions
over value functions and vectors.

However, the average case (equation 5) is a lower bound on the true average case, since removing the
assumption that a useless vector never leads to a useful vector will only serve to increase the number of

constraints faster. The worst case (equation 4) is an upper upper bound on the average, thus we would
expect the true average case to be somewhere between the worst case and average case. Since all the
previous cases different by some factor of UY, we can parameterize the real average case with

YV +1)

LFreal(I,U,Y)IO’UY+IY+U(I+1)+# (6)
where 1/2 < o < 1, but otherwise unknown at this point.
3 Cross-sum Analysis
Here we discuss the case of a single cross sum operation C' = A @ B where we want to parsimonious

representation of C'; which we will call C*. The cross sum operator is both associative and commutative. We
will define |[A| = N and |B] = M and without loss of generality we will assume that N > M. The number
of useless vectors in C'is U = NM — |C*|. Note that we have some constraints: |[C|= NM, 1< C* < NM,
0 <U < NM —1 and all of these values are non-negative. If we assume that the sets A and B themselves
are parsimonious, then we have tighter constraints so that N < C* < NM and 0 < U < NM — N.

We note that the size of C* cannot be known in advance, thus all the anlysis uses U in their formulas.
This shows how the algorithms are affected by the number of useless vectors present.

The analysis of the Lark filtering algorithm leads to the analysis for all variations of the cross-sum
algorithms (Nos, Ncs-sP and RR). We will use equation 2, equation 4, equation 5 or equation 6 depending
upon how we want to analyze each algorithm.

The N¢s algorithm for doing cross sums takes two sets, A and B, computes the cross-sum and then uses
Lark filtering to remove useless vectors. One variable in this algorithm is how to initialize the set that is
sent to the Lark filtering algorithm. The plain NCs version uses the simplex corner points to select out useful
vectors from the full cross sum. The enhancement NCs-SP initializes this set using points that were saved
previously to find vectors in the full cross-sum.

The RR algorithm for doing cross-sums is a bit more complex, but the important part we emphasize here
is that the order of the sets matter. The cross-sum operator is commutative, but when implemented with
the RR algorithm, the complexity changes depending on whether the smallest or largest set is chosen to be
the REGTION SET. We discuss this more in the analysis of RR.

3.1 Normal Cross Sum (NCS)

When using the simplex corners to generate the initial set for Lark filtering we can assume that we get at
least two vectors. If we get one vector, then that vector must dominate at all of the simplex corners and
thus is must dominate everywhere: we ignore this simple case. Thus the initialize set size is 2, the number
of useless vectors U, and the number of useful vectors to be discovered is Y = NM — U — 2.

3.1.1 NCS - total LPs
This analysis comes directly from the Lark filtering analysis

NCS1ps(N, M,U) = LF1ps(2,U, NM — U — 2)
— NM -2 (7)

This is the worst case scenario.

3.1.2 NCS - total constraints - best case

The best case here can be defined two ways: we can get the best case with respect to the initial set size of
2; or we can measure it using the best possible initial set size.

The best case is often not that useful, since it just gives us a lower bound on the number of constraints.
Thus, the best case should give us the ultimate possible best case and this is achieved by assuming the initial
set size is as large as possible and that the Lark filtering algorithm goes the best way possible.

The largest the initial set size can be is when every simplex corner yields a different vector. Thus, if we
let S be the number of states, then the best case definition is

NCShest (N, M,U) = LFpes (S, U, NM — U — 5) (8)
or
NCShest (N, M,U) = LFpest (2, U, NM — U — 2) (9)

3.1.3 NCS - total constraints - worst case

For the worst case, the initialization in this case will only detect 2 vectors. Thus the worst case for NCS is
Ncsworst(N7 M, U) = LFworst(Qa U, NM — U — 2)
1
:U(NM—U—2)+2(NM—U—2)+3U—|—§(NM—U—2)(NM—U—1)

1
=5 [N*M? + NM - U* + U — 6] (10)

3.1.4 NCS - total constraints - average case

Just like the best case, we have two choices for defining the average case: average with respect to 2 initial
vectors; or the average with respect to the average initial set size. We can’t really define how many of the
simplex corners will lead to useful vectors, but one guess (which is probably conservative for real problems)
would be S/2. Thus we get either

NCSave(N, M,U) = LFaye(2, U NM — U — 2) (11)
or
NCSave(N, M,U) = LFaye(S/2, U NM — U — 5/2) (12)

3.2 Normal Cross Sum with save-a-point (NCS-SP)

For this variation on the cross-sum of the sets A and B, we assume that every vector in A and B has a
witness point associated with it. How these points are obtained is discussed in section 13. The presence of
such points assumes that each vector is actual useful, or in other words, that A and B are parsimonious. The
Ncs analysis did not hinge on whether or not the sets were parsimonious, but here we make the assumption
that they are.

With the parsimonious assumption, and the save-a-point option, we have a lower bound on the initial
set size. Using the points associated with set A, since |[4] = N and we assume |A| > |B|, the initial set size
must be at least N. We note that we could also use the points associated with B as well, but there is no
way to guarantee that more than N vectors will be found. An often useful assumption is that we also use
the simplex corners, since this makes the initial set size for Nos-sP, max(N, S), which is at least as big as
the initial set size used in NcCs.

3.2.1 NCS-SP - total LPs

Assuming that we are restricted to having exactly N vectors in the initial set, the total number of LPs that
are needed is

NCS1ps(N, M,U) = LF1ps(N,U,NM — U — N)
—NM—-N (13)

3.2.2 NCS-SP - total constraints - best case

The absolute best case could be defined for the case where each witness point and every simplex corner
produced a unique useful vector. Alternatively, we could simply stay with the N vector initial size. Thus
we get

NCSSPpest (N, M,U) =LFpest(N + M + S,UNM —U — N — M — §) (14)
or

NCSSPhest (N, M,U) =LFheqt(N,U,NM — U — N)
=N(NM -U—-N)+UN+U + %(NM—U—N)(NM—U—N—I—I)
=N’M +UN = N*+UN +U
+ %[NZMZ —UNM — N°M + NM —UNM +U?
+UN—-U—-N>M+UN +N?—N]|

1
:UN—UNM—l—§[N2M2+NM—|—U2+U—N2—N] (15)

3.2.3 NCS-SP - total constraints - worst case

We are guranteed to get /N vectors in the initial set, so the worst case is found by simply substituting into
equation 4

NCSSP worst (N, M, U) =LF yort (N, U, NM — U — N)
=U(NM —U—N)+ N(NM—U—N)+U(N + 1)

1
+5(NM —U = N)(NM = U =N +1)
1

= (N*M?*4+ NM -U*4+U - N? - N) (16)

2

3.2.4 NCSP-SP - total constraints - average case

Restricting ourselves the the case where the initial set size is NV, we simply substitute Y = NM — U — N
into equation 5 and simplify to get

NCSSPaye(N, M,U) = LF (N, U, NM — U — N)
1

:§(N2M2—N2—UNM—|—NM—|—UN—|—U—N) (17)

3.3 Restricted Region (RR)

Here we undertake an analysis for RR that is similar to what was done in the Lark filtering algorithm. RR
requires a slightly modified version of the Lark filtering algorithm, though we will be able to apply the
formulas we derived in section 2. We assume we are going to do a restricted region Lark filtering on each of
F regions (in other words, there are F' vectors in the region set to be cross-summed). Let there be G vectors
in the other set in the cross sum. We will discuss the effects of selecting ordering, F' < G and F > G, in
section 4.2.

The RR algorithm sets up the region of a vector from the region set and attempts to find those vectors
from, among the G vectors, that dominate over this region. The cross sum of this region vector and the
set of vectors discovered from these region LPs are guaranteed to be useful vectors in the final parsimonious
representation of the full cross-sum. We assume both sets in the cross-sum are parsimonious to start with
and that the region set has a witness point associated with each vector. We will use the witness point to get
an initial vector from the G vectors in the other set.

Thus, we are doing a Lark filtering with G — 1 vectors and 1 initial vector for every one of F' vectors in
the region set. The initial vector (it is one of the G vectors) for each region is found using the witness point
of the region vector. The lark filtering analysis still applies, except that every LP (there will be G — 1 LPs
for each region) now has F' — 1 extra region constraints.

For a single region, ¢, the total number of constraints we have is:

(G=1)(F=1)+LF(1,U;,V; — 1) (18)

Where U; and V; are, respectively, the number of useless and useful vectors in the region i. Note that
Vi,U; + V; = G and Vi,0 < U; < G — 1. In addition we have some other facts that will come in useful

vi=v (19)

SNui=U (20)

For each of the F' regions, we need to do the number of constraints shown in equation 18.
The total number of constraints in the RR algorithm would be:

RR(F,G,U) = F(G—1)(F=1)+ Y LF(1,U;,V; - 1) (21)

i=1
This formula can be used to derive best, worst or average case formulas for the RR algorithm by using
the appropriate substitution for LF(1,U;,V; — 1). We re-emphasize that the order of the sets matters in
equation 21.

3.3.1 RR - total LPs

For each of the F regions, we must do G’ — 1 .Ps. Thus the total number of 1.Ps is

RRips(F,G) = FG - F (22)

3.3.2 RR - total constraints - best case

This case is not that useful, but we provide the formula for completeness. It provides a lower bound on the
number of constraints.

F
RRpest (F, G, U) = F(G—1)(F = 1)+ Y LFpest (1, U3, V; — 1)
i=1
Put intermediate steps here.

1 2
:F2G—F2—GU—|—§[FG2—FG—|—3U—|—U? (23)

3.3.3 RR - total constraints - worst case

The worst case is the most interesting, since it will allow us to make the strongest statements about the
algorithm in comparison with other algorithms. We start much the same as the best case derivation:

F
RRworst(Fa Ga U) = F(G - 1)(F - 1) + ZLFworst(la Uia Vz - 1)
i=1
Put intermediate steps here

F
:FZG—FQ—i—% FG*—FG+U =Y U} (24)

i=1

The appearance of the U; term is a bit hard to cope with when comparing to other algorithms which do
not have this variable. However, since that summation is being subtracted from the total, we can replace it
with the minimum possible value it can achieve and still preserve the validity of this worst case equation.

It turns out that for y = Y, z;, the term Y., 7 is minimized when z; = y/n (see appendix E).

Therefore, using this fact and equation 20 we get U%/F < Zle U?

1 U?
RRyorst(F, G, U) = F2G — F? + 3 FG* - FG+U — - (25)

3.3.4 RR - total constraints - average case

The average case is the most interesting from the implementation point of view, since it can guide us to
decide which algorithm to use in general. Here we will use equation 6 for LF(1,U;, V; — 1).

RRave(F,G,U) =F(G = 1)(F — 1) + LFave(1,U;, Vi = 1)

-

1l
-

K3

—F(G-1)(F - 1)+

-

i(Vi—1
|:0'Ui(vi_1)+vi_1+2Ui+7V(V)]

2

i=1

=F(G-1)(F—-1)+

-

1
|:O'UZ'VZ' —aUs + Vi = 14 20 + 5 (V7 = %)]
1

F F F F
=F(G-1)(F-1)+0d UVi—c> Ui+> Vi=> 1
i=1 i=1 i=1 i=1

+22Ui+§ZVZ'2—§ZVi
i=1 i=1 i=1

-
1l

F F
=F(G-1)(F=1)+0> UVi+(2-0)> U
1 B 1 B i=1 B i=1
+§Z%+§Z%2—Zl (26)
i=1 i=1 i=1

Using equations 20 and 19, substituting into equation 26 and simplifying, we get

F F
— 1 1 2
RRave(F,G,U)_F(G—l)(F—1)+aE UVi+ (2—-0)U+ 2V+ 2;_11@ -F (27)

i=1

Now we derive a replacement for Zle VZ»2 by using the fact that V; = G — U;

=1 z;l B
=Y GVi-Y UV,
=1 B =1
=GV - UV (28)
i=1

Substituting equation 28 into equation 27 yields

F F
11 1
RRave(F,G,U) = F(G=1)(F = 1)+ 0> UVi+(2-0o)U + 5V +5GV - §ZUZ»VZ» - F
i=1 i=1
F
1 1
=F(G=1)(F=1) = F+2-0)U+5(G+ 1V + (0~ §)ZUZ»VZ» (29)
i=1

We could bound Zf;l U; Vi by G*/4AF, but if we take o = 1/2 (the unrealistic average case), the summa-
tion goes away, simplifying the analysis. Recall that o = 0.5 was the average case of Lark filtering with some
slightly unrealistic assumptions. Thus, under those same assumptions and using the fact that V = FG - U
the average number of constraints in the RR algorithm becomes

1
RRave(F,G,U) = F(G—1)(F = 1) — F + %U—i— G+ DV
1
:F2G—F2—|—U—|—§(FG2—UG—FG) (30)

Note that since we would expect 1/2 < o < 1, this provides a slight under-estimate of the number of
constraints, thus we would expect RR to do a little worse than this under more realistic assumptions.

3.3.5 RR-NSP

Although we emphasize RR with the save-a-point option, we quickly provide some information about RR
when this option is not used. Where the RR algorithm refers to the version that save a point, we will use
RR-NSP to refer to the version that does not save a point.

For the total number of constraints, we only need to alter equation 21 to have one more LP per region,
thus we get

F
RRNSP(F,G,U) = FG(F — 1)—|—ZLF(0,UZ',VZ') (31)
i=1
where we would make the appropriate substitution for LF(0,U;,V;) depending upon whether we were
concerned with the best, worst or average case.

RR-NSP - total LPs When we do not save a point, we cannot initialize the set sent into the Lark filtering
algorithm to anything but empty. Thus we need an extra LP to find the first point to use to identify a vector.
Thus we need G LPs for each of the F regions.

RRNSPLps(F, G, U) = F LF1ps(0,U, G — U)
- FG (32)

RR-NSP - total constraints - best case

F
RRNSPpegt (F,G,U) = FG(F — 1)+ > LFrest (0, U3, V)
i=1
Put intermediate steps here.
U2

1
:FZG—GU+§[FG2—FG+3U+? (33)

This is simply F? more constraints than in the save-a-point version of RR.

RR-NSP - total constraints - worst case
F
RRNSPworst(F, G,U) =FG(F — 1) + Y _ LFworst (0, U;, V;)
i=1
Put intermediate steps here.
F
FG*—FG+U =Y U}

i=1

1
=F2G + =
+ 2

2 L 2 _ v
=PG4 5 PGP - PG+ U - — (34)

Just as in the best case, this is simply F? more constraints than in the save-a-point version of RR.

RR-NSP - total constraints - average case

F
RRNSPave(F,G,U) = FG(F —-1) + Z LFave(0,U;, V;) (35)

i=1

4 Cross-sum comparisons

All of these POMDP algorithms proceed by cross-summing the S¢ sets in some order. We’ll analyze the effects
of this in section 5. Here we choose to focus on a single cross-sum operation.

4.1 NCS vs. NCS-SP

Both of these do O(NM) 1.Ps, and whether NCs-sP is better than Nos hinges on the initialization step. In
the worst case NCS-sP can actually be worse than NcS. We can cross-sum two sets of size N and M, where
max(N, M) is less than the number of unique useful vectors at the simplex corners in the parsimonious
representation of the cross-sum set. A construction of such a problem is easily accomplished by having more
states than witness points and ensuring that a different policy is useful for each state.

4.2 RR-S vs. RR-L

The analysis for the RR algorithm assumed that the order of the sets (i.e., which set was the region set) was
predetermined. However, give two sets to cross-sum we have the freedom to choose either as the region set.
Therefore we can consider the effects of whether or not we should choose the largest or smallest set as the
region set. The former will be referred to as RR-1. and the latter as RR-S. We use L and S for the sizes to
be cross-summed and assume that L > S.

We begin by looking at the RR-NSP variations and then the normal RR variations.

4.2.1 RR-NSP-S vs. RR-NSP-L - total LPs

The total LP for these two are identical; both require exactly N M LPs, since either there are M 1LPs each for
N regions, or N LPs each for M regions.

10

4.2.2 RR-NSP-S vs. RR-NSP-L - total constraints - best case
4.2.3 RR-NSP-S vs. RR-NSP-L - total constraints - worst case

Using equation 34 and letting V equal the useful set of vectors, we get the worst case total constraints

RRNSPwmﬂU1G)::F%?+~g[QG——%;—I] (36)

which asymptotically is O(F2G + VG). Since max(F,G) <V < FG, if G > F then the complexity would
be O(FG?) and when G < F the complexity is O(F?G). Therefore, the worst case complexity is when
is V. = ©(F@) and is always a square of the largest set, regardless of which we choose for the region set.
However, when V = o(F(G) the situation is a little more complex. If V.= ©(F) (implying F > (), then the
complexity is O(F2G) and if V = ©(G) (implying G > F) then the complexity is O(G? + F2G). We note
that V.= O(F) or V = O(G) must be true, since max(F,G) <V < FG.

We want to say that this last asymptotic argument tells us to pick the smaller set as the region set, but
I don’t know if I really can from the asymptotic point of view. I should re-examine these arguments. Also,
regardless of this, I think we can actually proved that RR-NSP-S is always no worse than RR-NSP-L. This is
certainly the case empirically and when I actually prove it will be in appendix F.

4.2.4 RR-NSP-S vs. RR-NSP-L - total constraints - ave case

4.2.5 RR-S vs. RR-L - total LPs

The difference in the number of L.Ps here is simply the different between the two set sizes. Thus, RR-1 will
do L — § fewer LPs.

4.2.6 RR-S vs. RR-L - total constraints - best case

4.2.7 RR-S vs. RR-L - total constraints - worst case

Empirical observation: For the 792,575 case where 2 < N <50,2< M < N and 0 < @Q < NM — N, only
694 of them have RR-L with less constraints than RR-S and even then, NCS-SP is not better than RR-L or
RR-S. For the 791,252 cases where 3 < N <50,3< M <N and 0 < Q < NM — N, only 9 of them have
RR-L with less constraints than RR-S.

When completed the proof will be in appendix B.
4.2.8 RR-S vs. RR-L - total constraints - average case

The average case (assuming o = 1/2) analysis of RR was given in equation 30. There, F is the size of the
region set and G the size of the other set. Suppose we have two sets of sizes I and S, where L > 5. Let RR-L
be the RR algorithm that uses I as the region set size and RR-S that uses S. The average case complexity
for RR-T. is

RRLave(L, S,U) =RRaye(L, S,U)

:MS—U@—U—L+%U+%@+UV (37)

and for RR-S

RRSave(S, L,U) =RRaye(S, L, U)

:ﬂL—U@—U—S+%U+%@+UV (38)

Substracting equation 38 from equation 37 yields

11

RRLave(L, S, U) — RRSave(S, L, 1) =(L — 1)(S = 1)(L — s) — L+ S + %V(S _)
—(L—9) (L—l)(S—l)—%V—l (39)

which represents the number of extra constraints that RR-1. will have. When equation 39 is less than
zero, RR-I, will have less constraints than RR-S. Since we are given that L > S, L — S is positive and we can
simplify the problem to finding whether RR-L is better than RR-s to finding when this holds:

(L= 1)(5—1) =3V =1<0
LS—L—S+1—%V—1<0
LS—%V<L+S
LS~ (IS-U)<L+S

%(LS +U)<L+S

This equation gives us a way to determine, based upon size, which order to cross-sum the sets in for the
RR algorithm. We can show (appendix C) that for S > 4 or for U > 4 this inequality is never satisfiable
(under the constraints L > S, § > 0 and U > 0). In fact, we can restrict this even more. We can show that
for S = 3, RR-L is only better if the number of useless vectors is, 0 or 1. Thus, aside from these two cases,
the only time RR-L will be better is when S = 2 and U < 3. In the rare occasions when RR-L is better than
RR-S, we will save exactly (I — 2)(2 — 1/2U) constraints.

For the S = 2 case, we show in appendix D that the savings that RR-I. has over —sc rr-s is proportional
to 1/L, so the savings diminish as the size of the set increases, so even for the case when § =2 and U < 3,
the savings we get is not substantial for large sets. Additionally, although we cannot know a priori how
many useless vectors there are, most commonly there will be more than 3 making RR-S the clear favorite in
the average case.

4.3 NCS vs. RR-NSP-S
4.3.1 NCS vs. RR-NSP-S - total LPs

The Ncs scheme has 2 less LPs than —sc rr-nsp-s.

4.3.2 NCS vs. RR-NSP-S - best case
4.3.3 NCS vs. RR-NSP-S - worst case
Using the substitution U = NM — V in equation 10 we get

2
NCSworst (N, M, NM — V)= VNM + NM — ViqV

-3 (40)

which shows that Ncs asymptotically is O(VNM). Equation 36 and assuming N > M, we find the asymp-
totic complexity of RR-NSP-S to be O(M?N + VN). In the worst case when V = ©O(NM) we see that
RR-NSP-$ is asymptotically better than Ncs by a factor of M. At the other extreme when V = O(N), we
get O(N2M) and O(M2N + N?) for Ncs and RR-NSP-$ respectively which shows that when N = M and
V = ©(N), Nos is asymptotically better. However, for any other case RR-NSP-s is asymptotically better by
a factor of M.

Using equations 10 and 34 we can derive an inequality to determine the conditions under which one
variation will yield less constraints than the other (assuming N > M).

12

N2
NM@2M — 2N —2) + 3N? - < T6<0 (41)

I have empirically evaluated this and found the following observations which I am within a whisker of
actually proving:

e For N > 5, Ncs is only better if N = M U is as large as possible (i.e., N(n — 1)).

e For N =4, the only three times NCS is better is: if M =4 and U =12 or U =11;0rif N=4, M =3
and U = 8.

e For N = 3, both are better about half the time. Specifically, Ncs better for the following cases:

- M=2and U =1
- M=2and U =2
- M=2and U =3
- M=3and U =5
- M=3and U =6

e For N =2 and M = 2 Ncs is better.

When the proof is complete it will be in appendix G.

It is also the case that as the number of useful vectors increases, the savings of RR-NSP-S over NCS
increases dramatically.

Empircal observation: RR-NSP-S never worse than NCS when 3 < N < 50,3 < M < N and 1 <@ <
NM — N —2.

4.3.4 NCS vs. RR-NSP-S - average case
4.4 NCS-SP vs. RR-S

Here we assume that both NCs-spP and RR start with two parsimonious sets to be cross-summed. The size of
these sets will be N and M and we will simplify things by assuming that N > M. Thus the Lark filtering in
the NCs-sP case starts with /V vectors. The region set size for the RR-S algorithm will be M, since section 4.2
established that selecting the smaller size for the region set was preferable in both the average and worst
cases.

If N is smaller than the number of unique vectors at the simplex corners, then it would be better to
use the regular Ncs algorithm, or if we modified NCS-SP to use the simplex corners as well, then the Lark
filtering would have max(N, N;) vectors, where N is the number of unique useful vectors found by checking
at the simplex corners. For the remainder of this section we will assume that N > Nj.

4.4.1 NCS-SP vs. RR-S - total LPs

NCSs-SP saves an LP for each vector in the larger set for a total of NM — N, whereas RR-S saves an LP for
each vector in the smaller set for NM — M. Thus their difference is just the difference between the two set
sizes. We note that RR-L does exactly the same number of LPs as NCS-SP.

4.4.2 NCS-SP vs. RR-S - best case

4.4.3 NCS-SP vs. RR-S - worst case

The worst, case formula for Ncs-sp (with N > M) is given in equation 16. Plugging in N for G and M for
F into equation 24 we get the worst case formula for RR-S.

For the worst case, we can prove (see appendix H) that RR-s is always better than Ncs-sp, except if
M=2,N<8and U = N.

13

4.4.4 NCS-SP vs. RR-S - average case

The average case formulas for NCs-SP and RR-S are given in equations 17 and 38.

Using these formulas and the substitutions ¥ = NM —U — N and V = NM — U, we can state an
inequality that specifies when it is better to use NCs-Sp rather than RrR-s. With a lot of substitution and
algebraic manipulation we get the inequality

1 1
§N2M2—|—M2—|—NM—|—UN<NM2—|—§(N2M—|—N2—|—UNM—|—U—|—N) (42)

When this inequality is satisfied, then the Ncs-sp algorithm will have fewer total constraints than the Rr
algorithm, making it the preferred choice. Tt can be shown (see appendix T) that for M > 2, this inequality
can only be satsifed when N = 2 and U = 3, meaning that Ncs-sP will never have fewer total constraints
than RR-s, except for this one special case.

5 Set selection in IP

All of the previous analysis was for a single cross-sum operation. However, the 1P algorithm incrementally
cross-sums all the S¢ sets and the order in which they are chosen for cross-summing does not affect the the
final solution. The plain 1P algorithm can be viewed as

(.. ((S¢e 8 @8 @...)a 5%)) (43)

where @ is the cross-sum operator between two sets and 7 the number of observations. However, the
cross-sum operator is associative and commutative, so we have many choices for ordering the cross-sums.

We have seen that the complexity of the cross-sum algorithms depend upon the sizes of the sets, so a
good ordering could potentially help us. We have also seen that the cross-sum complexity is related to the
number of useful /useless vectors in the cross-sum. Ideally, given the sizes of all the parsimonious cross-sums,
we could compute the ordering that has the minimal number of total constraints in the LPs.

Note that this is slightly different than the matriz-chain multiplication problem, since unlike matrix
multiplication, this operator is commutative. This means we are free to change the ordering of the sets,
as well as the choosing the parenthesization. Just choosing the parenthesization alone is exponential is
7. Although we could use dynamic programming to find the optimal parenthesization, it isn’t as simple
as looking at all possible orderings and then compute the best parenthesization. First there are a lot of
orderings (it is all possible permutations of the sets) and second, there are many redundancies in doing this
that have to be dealt with.

Of course, the size of the results of all possible cross-sums cannot be known in advance, so the question
becomes how can we reason about this without that knowledge. The first question to tackle is why the
order should make any difference at all. We have to do all of the sets eventually anyway, so why should
the order matter? The matrix-chain multiplication problem is a good example of why the order can matter.
There, all matrices eventually need to be multiplied, but different orderings require vastly different numbers
of operations.

At any given point in time we will have a set of sets of vectors and we are free to choose any two to
cross-sum. We remove them from the set, cross-sum them and put the result back into the set. When there
is one set left, this is our answer. The regular 1P algorithm always uses the previous result as one of the sets
(see equation 43).

The analysis here assumes that all of the sets to be cross-summed are parsimonious.

The Ncs-sP and RR algorithms have their own criteria for how best to do the cross-sum given two sets
of particular sizes. Recall that we let N be the size of the larger set and M the size of the bigger set.
The question becomes deciding which two sets to pick, given nothing but their sizes (i.e., we will not know
anything about their resulting cross-sum set.) Among the choices are:

e Select the two smallest sets (1P-ss)

e Select the two largest sets (IP-L.L)

14

e Select the smallest and largest set (TP-sL)

Tf we list a set of sets in size order from smallest to largest, |A| < |B| < |C|... < |Z], then the parenthe-
sization that 1P-ss and IP-LL have are

(..(AeB)@aC)®...) 0 7) (44)
Aa(...a(Xa(Yae2)...)) (45)

respectively. The somewhat surprising observation is that for the 1P-sL it is nearly the same as 1pP-ss. If
we let L be the largest set then the parenthesization for 1P-SL is

(..(LaA)eB)aC)e...)s 2) (46)

This is a direct result of the fact that the cross-sum of two (parsimonious) sets has to be at least as large
as the largest set in the cross-sum.

5.1 Set selection of three sets - total LPs

5.2 Set selection of three sets - total constraints

The first step in a complete understanding of this problem is to look at the simple case

AeBaoC

where |A] < |B| < |C|. We want to know which two sets to choose to cross-sum first. Notice that if we
choose B and C, the size of the result must be at least size |C| (assuming they are parsimonious), and so
the result will be larger than the remaining A set. The same argument holds for choosing A and C first; the
result will be bigger than the remaining B set. It is only when we first choose A and B that there will be
two possibilities for the size of the result: |A ¢ B| < |C| and |A & B| > |C/|. This is important to keep in
mind when doing the analysis using the RR algorithm.

We are now going to abuse notation fairly heavily and use the letters A, B and C' and the size of the
sets. The context that they are used in will disambiguate whether we are referring to a set or its size.

To do an analysis of a sequence of cross-sums, we have to impose some restrictions upon the result size.
In general, we cannot predict the size of the result, so we resort to using a parameter p, where

U=pNM

This is a sort of expected number of useless vectors for a cross-sum of N and M vectors. Returning to
the case when we select A and B first, we can see that the ordering for the second sum is determined by the
relationship of pAB and C. It will be convenient to define @ = 1 — p, which makes the expected size of the
cross-sum of two sets aN M.

With the average case number of constraints for the cross-sum algorithms already worked out (see equa-
tions 11, 17 and 30), and with the expected size of the result being « N M, we can write down a formula for
the expected number of constraints for each of the three possible choices for finding A & B @ C. Note that
for this analysis we are restricted to 0 < pl — (AB)~ %, since the size of the the cross-sum of these three sets
must be at least C, i.e., «?ABC > (. We also divide by p to derive some of these formula, so we treat that
as a special case. It can be shown that for p = 0 1P-ss is always the best choice, regardless of the sizes of A,
B and C' (see appendix J).

It turns out that all three choices have a common term of

paABC — A% — %ABC

15

So we can ignore this in the comparison, which simplifies the formulas. The 1P-ss actually has two cases,
depending upon the relationship between «AB and C'. If aAB < C' we have

IPSSave(A, B,C) = AB (A +v1B + v5AB — a’AB) + 14C (47)
otherwise, if «AB > (' we use
TPSSave(A, B,C) = AB (A4 v B 4+ v2) — C* + 43C (48)
The other two are easier cases. For IP-LL we have
IPLLave(A, B,C) = BC (B +y1C +72) — B* + y3B (49)
and TP-ST,
TPSLave(A, B,C) = AC (A +~4,C +v3) — B>+ v3B (50)

Here we have conveniently defined the following

k= paABC
@
’7125
20—1 ka?
IRy
~v3 = aABC
_Ra
’74—2p
20—1 ka
Y5 = L + —
2 p

Note that these constants can probably be simplifed.

So given three sets and an expectation on the percentage of useless vectors in a cross-sum, we could just
compute these values and choose the one with the least number of expected constraints. We note that for
each of the three choices, we can construct problem sizes where it will have fewer expected constraints than
the other two. The question is when will these cases happen?

Until my analysis can quantify this better, here are some observations from an empirical comparison of
these three choices:

e 1P-SS - Best most often except for the exceptions cited below.

e IP-LL - never best when p < 0.5. The smaller the set sizes, the less likely it is to be good. When set
sizes are big it is more likely to be good when p is around 0.9. This seems never to be better than
1P-ST, when p < 0.75.

e 1P-SL - more likely to be best when set sizes are greater than 20 or so and the peaks seems to be
0.7 < p < 0.9, depending upon the size. Where it peaks seems to be a function of the size of the
problems. The larger the set sizes, the closer the small-n-large peak is to 0.9

We now move onto the question of how this simple case can be used in the analysis of the case when we
have an arbitrary number of sets to choose the cross-sum ordering of.
6 Incremental Pruning (IP) Analysis

We now attempt to analyze an entire Q% construction using the 1P algorithm. Currently, it does not draw on
any of the discussion of section 5, but makes some simplifying assumptions and limits itself to the worst-case
scenario. We will use |Q?| = @ and assume that all S¢ sets have size M.

16

We note that is all the S? sets are parsimonious, then |Q%| set must be at least as large as the largest
S set .

The worst case for this situation is when the two sets become as large as possible as quickly as possible.
Since we are assuming that all S7 sets are of the same size, the largest set can only get as large as @) and
smallest set will always be the size of the S¢ sets (since @ > |S?]).

For some analysis we assume that Vz,|S?| = M. The first cross sum that is done will be with two sets of
size M. The worst case is when the resulting parsimonious representation of this first cross-sum set becomes
as large as). For this to happen, @ < M2, If Q > M?, then the worst case is when the sequence of
cross-sum results have sizes: M2, M3, ... Q, Q, ... Q. However, even for the Q > M? case, if we assume
the first cross sum does produce a set size of @), we will simply be considering more constraints as possible.
Thus, we can make this assumption and preserve calling it the worst case possibility.

For some of the analyses, we will not assume that the S¢ sets are all of the same size. This is the more
realistic case, though harder to analyze. For these cases we define |S#| = S;.

As mentioned, the first cross-sum takes two sets of size M and produces a set of size (). Each of the
7 — 2 subsequent cross-sums will take a set of size M and a set of size () and produce a set of size (). Note
that it is impossible to generate a parsimonious representation of a cross-sum that is larger than). The
number of useless vectors in the first cross sum is M? — @ and for each subsequent cross-sum is MQ — Q.

Sometimes we might actually use the intermediate sizes of the cross-sums directly. The notation for this
case will be V; for the size of the result of the (¢ — l)th cross-sum. We define Vi = S and Vz = Q. We note
that Vi, V; < @ (except Vi when Sy is not parsimonious).

6.1 IP-NCS
6.1.1 IP with NCS - total LPs - worst case

For this case we do not have to impose any restrictions upon the relative sizes of the 57, sets, We also assume
that we only find 2 vectors by checking the simplex corners. Because the results of all the cross-sum are
bounded above by (), this analysis is actually a worst case one, since we assume that every cross-sum results
in a set of size (). Thus, an actual problem is likely to need less L.Ps than this.

The first cross-sum will require 5152 — 2 LPs, and each subsequent LP will require Q5; — 2 LpPs. Thus,
the total number of L.Ps required is

A
IPNCSLps(S:, @, 7) =515 — 2+ > _(QS; — 2)

1=3

A
25152—2+QZSZ'—2(Z—2)

1=3

=515 +Q> Si—-2(7-1) (51)

1=3

If we assume that for all 7, S; = M then the total number of LpPs is

IPNCS1ps(M,Q, 7) =M?* + Q(Z — 2)M — 2(7 — 1) (52)

6.1.2 IP with NCS - total constraints - best case
6.1.3 IP with NCS - total constraints - worst case

We will begin the the most general case, imposing no simplifications upon the sizes of V; or 5;. We will then
simplify the results by using upper bounds on these. Note that there are only Z — 1 cross-sums done when
there are 7 sets.

17

Z-1
IPNcsworst(Sza Qa Z) = Z Ncsworst(via Si+1a Vi5i+1 - Vi+1)

i=1
z-1,

= Z 3 [V2S2 1+ ViSis1 + ViSiy1 — Vigr — (ViSip1 — Vig1)? — 6]
i=1

Z-1
1
= g |:Vi5i+1(vi+1 +1)— 3 (VZil +Vigr + 6)] (53)
i=1

This equation is a bit too general and hard to do anything with, therefore since all the V; cannot be
larger than @, we firsat make the worst case assumption that Vi, V; = Q.

Z
IPNCSors (52,2 2) =$155(Q + 1)+ Q(Q +1) Y. 8 = (7~ 1(Q°+Q +6) (54)

1=3

We can further simplify this equation by taking the largest S; = M and assuming that Vi, S; = M. This
yields

Z-1
IPNcsworst(Ma Qa Z) :Ncsworst(Ma Ma M2 - Q) + Z Ncsworst(Ma Qa MQ - Q)
=2
SMAQ4)+ (2= (MQ*+ MQ) - S(Z -)@ +Q+6) (55)

2

There is another way we could look at the worst case. This is when every vector is useful, i.e., Q = M?
and U = 0 for each cross-sum. We can derive a formula for the number of constraints by noting that cross-
sum ¢ will have NCSyorst (M, M)) constraints (where U = 0) Thus, an alternative worst case formula could

be

Z
IPNcsworst(Ma Q7 Z) =

7

1

[M2i+1 4 Mi+l _ 6]

| —

1

Put intermediate steps here.

_1 4 MZZ—Z_l N MZ_l—l

We note that plugging in Q = M7 into equation 55 will yield a higher value than equation 56, since
the former makes the assumption that the very first cross sum produces a set of size Q. For Q = MZ, this
is impossible and furthermore, every cross sum except the last one will yield sets with less than () vectors.
Therefore, equation 56 is liable to be a tighter upper bound when there are few useless vectors.

6.1.4 1IP with NCS - total constraints - average case

6.2 IP-RR-NSP-S
6.2.1 IP with RR-NSP-S - total LPs

A
TPRRNSPSLps(S:, @, Z) = LF1ps(0,0,515:) + > LFLps (0,0, QS))

1=3

A
=515 +Q> S (57)

1=3

18

6.2.2 IP with RR-NSP-S - total constraints - best case
6.2.3 IP with RR-NSP-S - total constraints - worst case

Without much loss of generality we assume S7 > S5 and get

z
IPRRNSPSWOI‘St(SZ7 Qa Z) :RRNspsworst(Sla 527 5152 - Q) + Z RRNSPSWOI‘St(Q? Sia QSZ - Q)
1=3
Put in intermediate steps here.
7 1 Q> 1
_ 2 2 _ 2_ (7 _ _x _
=5155 + QS +Q;52 +(7-2)Q° - 5(Z-1)Q~ ; i (58)
Assuming Vi, S; = M we get
2 1 Q
TPRRNSPSworst (52, @, 7) = (Q(7 —2) + M) (M + Q) — §(Z -1+ i

6.2.4 1IP with RR-NSP-S - total constraints - average case

6.3 IP-NCS-SP
6.3.1 IP with NCS-SP - total LPs - worst case

We assume that S7 > S5 and Vi,) > S;, so the first cross-sum will require 51.55 — 57 LPs, and each subsequent
LP will require @5; — @ LPs. Thus, the total number of LPs required is

Z
TPNCSSPrps (S, Q, Z) =LF1ps(S1,0, 5152 — S1) + > LFrps(Q, 0, 5,Q — Q)

1=3

z
=515 — 51+ Z(Qsi -Q)

=51(S2—1)+Q (Z Si— 7+ 2) (59)

If we assume that for all 7, S; = M then the total number of LpPs is

IPNCSSP1ps(M, Q. Z) =(M — 1)(M + Q(Z — 2)) (60)

6.3.2 IP with NCS-SP - total constraints - best case
6.3.3 IP with NCS-SP - total constraints - worst case

We have to be a bit careful about the worst case here. With regular 1P with Ncs, the assumption that the
very first cross-sum yields a set of size @ is valid for the worst case, since the realtive sizes the two cross-sum
sets does not come into play. However, the NCs-sP variation is sensitive to the relative sizes of @) and the S7
sets, since it will save maz(Q, S;) 1.Ps for each cross-sum. Here we assume Vi, Q > S; and note that this still
preserves the worst case assumption; since we are assuming that we save) LPs instead of S;, when S; > @,
we will be underestimating the number of LP solved.

Without much loss of generality we assume S7 > S5 and get

19

Z
IPNCSSPWOI‘St(SZ7 Qa Z) :Ncsspworst(sla 527 5152 - Q) + Z NCSSPWOI‘St(Q? Sia QSZ - Q)
i=3
Put in intermediate steps here.

z 3
ZSZ'—Z—I—§

1=3

=(Q+1) (5152 +Q

) — 551(51 + 1) (61)

Assuming Vi, S; = M we get

ITPNCSSPworst (S, @, Z) =(Q + 1) <M2 +Q [(Z — DM — 7 + g]) - %M(M + 1)

6.3.4 1IP with NCS-SP - total constraints - average case
6.4 TIP-RR-S
6.4.1 1IP with RR-S - total LPs - worst case

Without loss of generality, assume 57 > S;. Then from equation 22, the first cross-sum will require
RRLps(S2, S1) = 515 — S .ps. Each subsequent cross-sum will require RRrps(S;, @) = @S; — S; LPs.

Z
IPRRSLps(S:, @, 7) =5152 — Sa + >_(QSi —)
1=3
Z Z
=515 — S +QZSZ' — ZSz’
1=3 1=3
Z Z
=515 +Q> Si—>_ S (62)
1=3 =2

If we assume that for all 7, S; = M then the total number of LpPs is

IPRRSLps(M,Q,Z) =M*+ Q(Z - 2)M — (Z —)M (63)

6.4.2 IP with RR-S - total constraints - best case
6.4.3 IP with RR-S - total constraints - worst case

Worst case total constraints for 1P with RR-$ is a bit problematic for a number of reasons. It requires that we
have a parsimonious representation for the region sets and most other algorithms don’t make this restriction.
Thus, the cost of making the region set parsimonious should be accounted for somewhere. However, if we
are ensuring that the S¢ sets are parsimonious, then the situation is not so bad, because while making the
S¢ sets parsimonious we generate the witness points we need, so we just have to save them.

We proceed much the same as we did in section 6.1.3, starting with a general case and then making
simplifying assumptions to arrive at a less complex equation. We asume that 57 > 5.

Z-1

IPRstorst(Sza Qa Z) = Z RRworst(Si+la Via ViSi+1 - Vi+1)
i=1
Put in intermediate steps.

Z-1 1 VZ
= [s209i - 82 Wi = 3 (Vo 4 g2 (64)
= i+1

20

This equation is a bit too general and hard to do anything with, therefore since all the V; cannot be
larger than @, we firsat make the worst case assumption that Vi, V; = Q.

Z-1
IPRRSworst(S=+ @, Z) =5152 — S5+ SQ + (Q — 1) > S2, + (£ — 2)Q*
i=1

_l(Z_l)Q_lQZZz:_l ! (65)
2 27 = Sip

We now further simplify and assume Vi, 5; = M. We can plug this into equation 65 or use the following
simplified derivation.

Using the expression for the worst case of RR (equation 25), TP with RR-s worst case total constraints
becomes

Z-1
IPRstorst(Ma Qa Z) :RRworst(Ma Ma M2 - Q) + Z RRworst(Ma Qa QM - Q)
i=2
2 _ 2
:MS—M2—|—% [MS—MZ—i—MZ—Q—W]

Z-1
+y <QM2—M2+%[Q2M—QM—|—QM—Q—

=2

(QMA; Q)2]>

Put intermediate steps here.
1 2
=M3 - 57 -1 <2M2 +Q+ %) +(Z=2)(QM* + Q% + MQ (66)

This derivation always uses M as the size of the region set, thus assuming that M < Q. If Q < M, then
RR-S should switch the sets around. However, section 4.2 shows that for nearly every case RR-S has fewer
total constraints than RR-L, so equation 66 is still liable to be a valid worst case formula. To get a slightly
tighter bound for the case when @ < M, we can simply switch the @ and M around in the summation to
get

Z—-1
IPRstorst(Ma Qa Z) :RRworst(Ma Ma M2 - Q) + Z RRworst(Qa Ma QM - Q)
=2
Put intermediate steps here.
=M*-M?-Q <Z— %) +(Z-1)MQ
2 2 Q?
7z =2y (MQ* — - —
(7= 2(MQ - @) - o (67)

6.4.4 1IP with RR-S - total constraints - average case
7 Incremental pruning comparisons

7.1 IP-NCS vs. IP-RR-NSP-S
7.1.1 IP-NCS vs. IP-RR-NSP-S - total LPs

Equations 51 and 57 show that 1P-NCS does 2(Z — 1) fewer LPs than IP-RR-NSP-S.

21

7.2 TIP-NCS vs. IP-RR-NSP-S - total constraints - worst case

From equations 54 and 58 we get the asymptotic complexities of O(Q? ZZ»ZIS Si), O(Q ZZ»ZIS 582+ Q*Z) for
IP-NCOs and TP-RR-NSP-§ respectively. When Vi, 5; = ©(Q) these equivalent, but otherwise TP-RR-NSP-$ has
lower complexity. This follows from the analysis of section 4.3.3 which showed, for a single cross-sum, that
Ncs was only better when N = M and a few other cases.

Empirical observation: IP-RR-NSP-S is never worse for the 3,822,588 cases of 4 < M < 200, 3 < Z < 200,
M+ 1< Q <200. I need to do the analysis to say something more general about it.

7.3 IP-NCS-SP vs. IP-RR-S
7.3.1 IP-NCS-SP vs. IP-RR-S - total LPs

Equations 59 and 62 show

7.4 TP-NCS-SP vs. IP-RR-S - total constraints - worst case

8 Witness Analysis

We will want to compare variations of 1P with the previous best exact PoMDP algorithm, Witness. To do this
we first present a brief analysis of the Witness algorithm. We make no attempt to explain this algorithm at
this time, but do note that there are differing ways that the algorithm can be initialized.

The first method simply adds an arbitrary item to the agenda and finds all () witness points in the same
manner. Another method, and the one we assume for the analysis, uses an arbitrary point to initialize the
Q" set and adds all of its neighbors to the agenda. This latter method only needs to uncover () — 1 witness
points. Other options are variations on using the simplex corners and using previously saved witness points.
The initialization step assumption affects the analysis to varying degrees.

We only focus on the complexity of constructing a single Q® set, and we denote the size as |Q*] = Q.
We assume that the size of each S set is M.

How many constraints are in each witness LP depends upon how quickly we uncover the vectors in Q°.
At any given time, the number of constraints in the witness LP will be one more than the current size of Q¢
set we are building up. The faster we find witness points, the larger the set grows and larger the LPs get.
The worst case is when the first) — 1 LPs all discover witness points. Then all the agenda items will have
the largest possible LPs when they are removed. The absolute best case is when we always find the witness
points with the very last agenda item.

8.1 Witness - total LLPs

The witness algorithm sets up an LP to either remove an item from the agenda or to find a witness point.
In the general case there will be (S, — 1) agenda items for each observation and vector in Q®. Thus, there
will be a total of @ Zizzl(Si — 1) agenda items to be processed.

VA
WITNESSLps(S:, Q. 2) =Q > (S — 1)+ Q —1
i=1

:Q(ZSZ»—Z)—i—Q—l (68)

i=1

Assuming Vi, S; = M, there will be Z(M — 1) items added to the agenda for each vector in Q%, so there
will be QZ(M — 1) items in the agenda that will need to be removed. Thus the total number of L.Ps done in
constructing Q¢

WITNESSLps (M, Q, 7) = QZ(M — 1)+ Q — 1 (69)

22

8.2 Witness - total constraints - best case

The best case analysis is convenient, because if we can show that the worst case of an 1P variation is better
than this, we can say something very strong about that variation in comparison to the Witness algorithm.

We start with one vector in Q% and add its Zizzl(Si — 1) neighbors to the agenda. The LPs stay as
small as possible as long as we don’t find a witness point (only 2 constraints at first). Thus we want to find
the witness point with the very last agenda item. We note that after we find this witness point, we will
still need an LP to remove this item from the list. After this second vector is added to @?, we add another
Zizzl(Si — 1) items to the agenda and want to find the next witness point with the last agenda item again.

Q+1 Z
WITNESShest (M, Q, Z) 225—1 +ZZS—1 +1)i

i=3 i=1
Add intermediate steps.

Z
1
Ii(ZSi—Z-Fl)(Q‘Fl Q@ +2) - ZS +7Z-3 (70)
i=1
Assuming Vi, 5; = M
Q+1
WITNESShest (M, Q, 7) = 2Z(M — 1) + Z —1)+1)i
Q+1
=2Z(M - 1)+ (Z(M—1)+1)> i
i=3
Q+1
=2Z(M — 1)+ (Z(M = 1)+ 1)(>_ i—3)
i=1

=2Z(M - 1)+ (Z(M - 1) + 1)(%(@4— 1)(Q+2)-3)
=2Z(M —1)+2-2+ (Z(M — 1)+1)(%(Q+1)(Q+2)—3)
= (Z(M =)+ 5@+ D(Q+2) 1)~ 2 ()

8.3 Witness - total constraints - worst case

The worst case total constraints for witness is when we find all the witness points before we remove anything
from the agenda.

Q-1 QXL 8i-2)+Q-1
WITNESSworst (M, Q, Z) = > (i +1) + (Q+1)
i=1 i=Q
Q QXL si-7)
=> i+ (Q@+1)—1
i=1 =1
z 1
=Q(Q+1) (; Si—7Z 5) (72)

If we assume Vi, S; = M we get

23

Q-1 QZ(M—1)+Q-1
WITNESSworst (M, Q, 7) = Y (i + 1) + @+1)

i=1 i=Q
Q QZ(M-1)

=> i+ Y. (Q+1n-1
i=1 i=1

= 5QIQ+1NQZ(M = 1)(Q+ 1)~ 1

= Q@+ N(Z(M ~ 1)~) (73)

8.4 Witness - total constraints - average case

This case isn’t that useful, so we adopt a simple interpretation of the average case. We assume that we do
the same number of Lps for all possible sizes of LPs. The LP sizes vary from 2 to () + 1 and there are a total

of QZ(M — 1)+ @ — 1 Lps. The average LP size is (Q + 3)/2 and thus
1
WITNESSave(M. @, 7) = 5(Q +3)(QZ(M = 1) + @ — 1)

= L@+ 3)QUZM 1)+ 1) - 1) (74)

It is conjectured that the actual average case would have more constraints than this, since we would
expect witness points are more likely to be uncovered early on in processing agenda items than later.

9 Incremental Pruning vs. Witness

9.1 IP-NCS vs. Witness - total LPs

The analysis for witness (equation 68) is the number of L.Ps that must always be done. Equation 51 for 1P-NCs

used a worst case analysis. If we assume that all S¢ are parsimonious to start with, then @ > max; S;.
Empirical observation: 1P-NCS is better when Q > M and Z < M. Witness is better when Q < M — 3.
Using equations 68 and 51 we can derive the following inequality

Z(Q—Q) SQ(51+52+1)—5152—3 (75)
Q(S1+ S+ 1)— 515, -3
7< s (70

When this inequality is satisfied, then witness will never do fewer 1.Ps than 1P-NCS. If we restrict ourselves
to the case where Vi, Q@ > S;, then the simple constraint 7 < max(Sy, S2) will be enough to specify when
1P-NCs will require less 1.Ps than witness. This follows from arguments that stem from the following rewrite
of right-hand side of equation 76

S+ S+ 251 n 25, 515 1
Q-2 Q-2 Q-2 Q-2

The last term will always be less than one and is a negligible contribution to the right-hand side. Under
the assumption that Vi, @ > S; the fifth term will contribute at most — min(Sy, S3) L.Ps. The third and fourth
terms only serve to increase the right-hand side. We are essentially left with 7 < §; + S; — min(Sy, S3)
which shows that for 7 < max(S, S2) TP-NCs is at least as good as witness.

Note that we divided by @ — 2 to derive equation 76. However, we always assume that ¢ > 1 and we
can show that equation 75 is satisfied for) = 2.

Also note that because the TP-NCs analysis was worst case, the situations where it is better will probably
be broader than what is specified here.

(77)

24

9.2 TIP-NCS vs. Witness - total constraints - worst case

Using equations 53 and 72 we can derive the following inequality

Put derivation here.
25155
Q

which, when satisfied ensures that 1P-NCS has no more constraints than witness. When we assume
@ > max(Sy,S3) the second term on the right-hand side contributes at most —2min(Sy, S2) constraints.
This leaves us with the inequality 7 < 2max(Sy, S2) — 2.

Switching the inequality sign in equation 78 we get an expression that, when satisfied, will ensure that
witness does no more LPs than IP-NCS.

Empirically we found this inequality to be satisfied when M > 3 and Z > 4M — 1. So it should be easy
to show this by doing the algebra.

For the cases in between the cases where we show the two variations to be superior, we would like to
quantify which will be better. This will require some extra work.

A §2(51 + 52) —

_9 (78)

9.3 IP-RR-NSP-S vs. Witness - total LLPs

In section 7.1.1 we showed that 1P-RR-NSP-S does two more LPs than 1P-N¢s. Thus, the comparison shown
in section 9.1 is nearly identical to this case with the exception of the constant factor 2 which has to be
accounted for.

Need to show the derivation and maybe add some more discussion here, but it is mostly the same as
section 9.1, so we’ll leave it an an exercise for the reader.

9.4 IP-RR-NSP-S vs. Witness - total constraints - worst case

Since 1P-NCS was not a clear winner over witness, the results of section 7.2 do not let us say anything very
strong about the relationship between 1P-RR-NSP-SP and witness. Therefore, we must directly compare them.

Asymptotically, TP-RR-NsP-s is O(Q ZiZIS 5% 4+ Q27) and witness is O(Q? Zizzl Si).

Not sure if we can really make any asymptotic claims here.

Using equations b8 and 72 we can derive an inequality to determine when one algorithm has fewer
constraints than the other.

We need to analyze this inequality better to see what we can prove about it. Empirically, when M > 2,
and Q > M + 2 IP-RR-NSP-S never has more constraints than witness. Thus, there are many more cases
where IP-RR-NSP-S is better than witness than there were for 1P-NCs. We especially need to characterize the
cases where witness is better.

9.5 IP-NCS-SP vs. Witness - total LLPs
9.6 IP-INCS-SP vs. Witness - total constraints - worst case
9.7 IP-RR-S vs. Witness - total LPs

Using equations 62 and 68 we can derive the inequality

zZ

z z
5152-1-@252'—252' <@ (Zsi—z) +Q -1
1=3

1=3 i=1

Put intermediate steps here.

(Zsi—1)+51+52+1 (79)

=2

which, when satisfied, ensures that IP-RR-S does not more LPs than witness. If Zz’Z:Z S; < @ then Z < S571+.5,

will ensure than 1P-RR-S is better. When ZZ»ZIZ S; > @ this gets even less restrictive.

I did a poor job quantifying the cases here. I should go back over this when I put in the intermediate
steps.

Assuming that Vi, 5; = M we get

M2 -1
Q-M

7 <2M+1+
which shows that 1P-RR-S is best when 7 < 2M + 1.

9.8 IP-RR-S vs. Witness - total constraints - worst case

Nothing but empirical results here so far. But it pretty much looks like IP-RR-S is always better when M > 2.
For the 3,920,499 cases where 3 < M < 200, 2 < Z <200 and M < @ < 200 1P-RR-S is better.

10 Effects of Domination Checks in NCS and RR

We have ignored the effects of the domination checks in the algorithms up to this point. However, doing the
domination check is the dominant factor in saving time when solving real problems.

Just like trying to know the resulting size of a cross-sum operation, knowing how many vectors the
domination check will eliminate is not possible without actually doing the operation. We will therefore
quantize the savings similar to what we did earlier. For a given set of size IV, assume that the number of
vectors purged through the domination check is (1 — A)N, which makes the resulting set size AN.

Our first task is to define where the Ncs-sp and RR algorithms perform their domination checks. We
note that there is a filtering that happens in the construction of the S¢ sets, but we ignore this, since we
can just define the size of the S¢ set to be the post-filtering size.

10.1 Domination checks in NCS-SP

In the Ncs-sP algorithm, the domination check is done after the full cross-sum, just prior to Lark filtering.
The resulting size that we will actually need to filter is then AN M. Equations 2, 4 and 5 still apply, except
now Y = ANM —U — N. This makes the average case total number of constraints in N¢s-sP with domination

checks
NCSSPDOM(N, M,U) = LFave(N,U,ANM — U — N)
1
=3 (MN?*M? = N? = A\UNM + ANM +UN + U — N) (81)

Note that it is no longer valid to make the substitution U = pN M, when looking at the expected total
constraint case; we will have to use U = pAN M instead. Also note that we are constrained to 1/M < X < 1.

10.2 Domination checks in RR

At first it may not appear that domination checks can be used in the RR algorithm. Since we start with two
parsimonious sets and never consider the full cross-sum set, how could we possible do domination checks?
The answer is that we will actually perform the full cross-sum, before doing the restricted region LPs.

It may seem that doing the full cross-sum defeats the purpose of doing the restricted region technique,
but actually doing the cross-sum is a cheap (in time) calculation, assuming we have the space to store all
the vectors. The real time consumption is filtering this set down to its parsimonious representation. By
doing the full cross-sum and performing domination checks on the full set, we can eliminate vectors that we
will have to consider when doing the restricted regions. Since domination checks typically remove a lot of
vetcors, this savings is well worth the small amount of extra work, when space permits.

The main drawback is that it complicates the algorithm a bit. First, when we perform the full cross-sum,
we must mark each new vector with which region set vector created it. The other complication is that we

26

will not actually be setting up LPs on the N vectors being cross-summed; will will actually be setting up
region LPs on the subset of the cross-sum set that were derived from the current region set vector. This is
probably really confusing, so I should introduce some notation to keep things clear.

Note that a slight savings could be had by removing the M vectors from N M that we could get with the
points saved for the region sets. This would reduce the complexity of the domination check. However, this
savings is likely to be miniscule compared to the other work that needs to be done.

This domination check in RR also complicates the analysis. Before, we introduced the A parameter as a
measure of how much filtering the domination check accomplishes. For the Ncs-sp algorithm this was easy
to reason about, since we were just doing Lark filtering on a set of size ANM, but here it would seem to
require knowing how the dominated vectors are distributed among the different region set vectors. It will
turn out that this doesn’t matter as the following derivation shows.

Let A be defined as before and let d; be the number of vectors removed by domination checks on region
i. Then the number of 1Ps for region i will be N — 1 — §;. Note that Zf‘il d; is just the total number of
vectors removed by domination checks and thus Zf‘il Ji=(1-XNM.

Finish this derivation.

A possible interesting result is that the number of constraints saved by domination cheks is different in
Ncs-sP and RR. This results because RR is better, and it seems to be such that the more vectors it has,
the more constraints it saves. Therefore, it would seem that by reducing the number of vectors with a
domination check, would narrow the gap between Ncs-spP and RR. However, this gap should only go to zero
where NCs-sP and RR have equivalent number of constraints (which is to say in uninteresting cases.) I need
to work through these formulas more carefully though to exactly quantify this.

10.3 Domination checks in Witness

11 RR analysis when o < 1/2

All of the analysis on RR assumed that the average case had ¢ = 1/2. Since we have shown that lower values
for o only reduce the number of constraints and that RR is superior to NCs-SP with o = 1/2, a more detailed
analysis is not necessary at this time.

12 Adding LP set-up overhead costs

The total number of constraints criteria was convenient for the initial analysis, but insuffcient for being
indicative of a true implementation. It ignores the time required to set up an LP and the efficiency gains of
adding more constraints to an LP.

For instance: An algorithm that uses 100 1.ps with 1 constraint each could be inferior to an algorithm that
used 10 1.ps with 10 constraints. Aside from having to set up 90 more 1.Ps, the running time of LP solution
procedures does not scale linearly with the number of constraints. The latter problem is too complex to deal
with directly, but we would like to capture some notion of of adding in the set-up time.

To do this we can introduce an LP set-up cost . To keep things compatible, we will measure this cost
in constraints. This cost could be guessed or measured empircially, then the formulas derived could be
compared with whatever particular value you have for the cost.

The number of 1.Ps for Nos-sp is U + Y regardless of whether we are using worst, average or best case
analysis. We simply need to check every vector that isn’t in the initial set.

In the RR algorithm using the largest set as the region set, for each region of the M regions, we will
require N — 1 LPs, so the total number of 1.Ps required is M (N — 1). This is larger than the number of LPs
done in Ncs-sP since U +Y = NM — N and N > M. Thus RR does N — M more LPs.

Note that if we choose the larger set RR-L, as the region set, then the total number of LPs in RR will be
N(M — 1), which is exactly the same as the number for Ncs-sp. If we define the overhead for each 1P as &,
then for a given overhead we can analyze when RR-I. and or NCS-SP is better than RR-s.If either does less
than (N — M) more constraints, then RR would be inferior.

Add the analysis here.

27

13 Getting witness points for NCS-SP and RR
13.1 Note on NCS

There are instances where NCS could be better than either N¢s-sP or RR. Our analysis has ignore the cost
of acquiring the initial points that both NCs-sP and RR use. If this cost exceeds the difference between the
algorithms, then N¢s would be the preferred algorithm. We could go through the analysis if we really wanted
to, but for now are content with calling attention to this fact. We suspect that Ncs will only win when the
problems are on the small side and so the savings are not that important.

13.2 Using witness points in Witness

Talk about seeding with simplex corner and/or saved witness points.

14 Hidden Costs

14.1 Enumerating vectors

Lark Filter - average case formula proof
Proof that RR-S better than RR-L - worst case
Proof that RR-S better than RR-L - average case

RR-L savings when S = 2 - average case

H O a =@ »

Proof of z; = y/n

Note: I am absolutely sure that this can be shown. Until I put it here, be a bit skeptical.

F Proof that RR-S better than RR-L - worst case

This is true empirically and T am fairly confident that I can prove this.

G Proof that RR-NSP-S better than NCS - worst case
H Proof that RR-S better than NCS-SP - worst case
I Proof that RR-S better than NCS-SP - average case

J IP set ordering when p =0

Note: I am not really sure that this can be shown. Until I put it here, be skeptical.

28

