
Providing Customized Process and Situation Awareness
in the Collaboration Management Infrastructure*

Donald Baker, Dimitrios Georgakopoulos, Hans Schuster,
Anthony Cassandra, and Andrzej Cichocki

Microelectronics and Computer Technology Corporation
3500 W. Balcones Center Drive

Austin, Texas 78759
{dbaker, dimitris, schuster, arc, cichocki}@mcc.com

Abstract
Collaboration management involves capturing the collabo-
ration process, coordinating the activities of the participat-
ing applications and humans, and/or providing awareness,
i.e., information that is highly relevant to a specific role and
situation of a process participant. In this paper we propose
an awareness provisioning solution that allows customiza-
tion of the awareness delivered to each process participant.
Unlike existing collaboration management technologies
(such as workflow and groupware) that provide only a few
built-in awareness choices, the proposed awareness solu-
tion allows the specification of what information is to be
given to what users and at what time. To support this
advanced level of awareness, we require the definition of
awareness roles and the specification of corresponding
awareness descriptions. Awareness roles can be dynami-
cally created and associated with any process scope.
Awareness descriptions define what information is to be
given to users in an awareness role. Since awareness roles
are created or become visible when they are needed, the
existence of an awareness role also determines the appro-
priate time interval during which the information specified
in the awareness description can be delivered. This custom-
ized awareness provisioning approach minimizes informa-
tion overloading and allows the combination of process-rel-
evant information with external information as needed by
the process participants. The proposed awareness provi-
sioning solution is employed by the Collaboration Manage-
ment Infrastructure (CMI), a federated system for collabo-
ration process management. Throughout the paper we use
examples from the crisis management domain.

*This work was funded in part by DARPA contract F30602-97-C-214,
“Serveillance of Complex Events Using Active Agents.”

1. Introduction
Collaboration managementinvolves capturing or mod-

eling collaboration processes, coordinating the activities of
applications and human participants, and/or providing
awareness by communicating collaboration-related infor-
mation to participants.

The Collaboration Management Infrastructure(CMI)
has been developed at MCC to accomplish the following
objectives:

• manage collaboration processes,

• provide combined process and situationawareness, and

• support processes in virtual enterprises as well as in tra-
ditional organizations.

CMI technology development is driven by the require-
ments of many advanced applications that are not effective-
ly supported by existing workflow and groupware technol-
ogies. To address these requirements CMI provides a so-
phisticated Collaboration Management Model (CMM) and
a corresponding component-oriented system that imple-
ments the CMM. CMM draws existing primitives from
workflow and groupware models and introduces new prim-
itives for previously unsupported collaboration process re-
quirements. CMM consists of aCore Model (CORE) and
several specialized extensions of it. CORE provides a com-
mon set of process model primitives that constitute the basis
for all extensions. The CMM extensions include specialized
process models designed to support coordination, aware-
ness, and services. TheCoordination Model(CM) provides
additional primitives for coordinating participants and for
automating collaboration process enactment. The CM may
have to deal with coordination processes that may be par-
tially unknown when they start. TheAwareness Model
(AM) is a CORE extension that captures customized pro-
cess and situation awareness. TheService Model(SM) sup-
ports reusable process activities and related resources, ser-
vice quality, and service agreements, as needed to support
collaboration processes in virtual enterprises. CM and the

In: Proceedings of the Fourth IFCIS Conference on Cooperative Information Systems (CoopIS’99)
Edinburgh, Scotland, September 2-4, 1999.

Also: MCC Technical Report CMI-022-99, MCC, Austin, TX, 1999

coordination capabilities of CMI are described in [8, 7]. SM
and service selection and invocation are discussed in [7].

In this paper, we describe the CMI capabilities for pro-
viding awareness, i.e. AM, relevant parts of CORE, and the
related implementations. We defineawarenessas informa-
tion that is highly relevant to a specificrole andsituationof
a process participant. Because a human's attention is a finite
resource that must be optimized, awareness information
must be digested into a useful form and delivered to exactly
the users who need it. If given too little or improperly tar-
geted information, users will act inappropriately or be less
effective. With too much information, users must deal with
an information overload that adds to their work and masks
important information.

Awareness provisioninginvolves the specification of rel-
evant information, gathering these information from a run-
ning system, digesting it into a usable form, and delivering
it to the appropriate process participants. Unlike existing
collaboration management technologies (such as workflow
and groupware) that provide only a few built-in awareness
choices, CMI allows the customization of awareness via
awareness specifications. Awareness specifications, which
are provided by process/awareness designers, define what
information should be directed to what users based on their
roles in the process. Awareness specifications consist of
awareness rolesand correspondingawareness descriptions.
Awareness descriptionsdefine the information that is deliv-
ered to a user that plays a specific awareness role. Such de-
scriptions are made from event patterns that not only de-
scribe the desired constellation of events, but also how the
information from those events is to be digested. Awareness
roles are referenced in awareness descriptions and they are
used in delivering customized awareness to process partici-
pants. Awareness roles do not have to be the same roles used
for process coordination. Furthermore, they can be dynam-
ically created and associated with any processscopeor con-
text, i.e., any collection of process activities and/or resourc-
es. The existence of an awareness role determines the ap-
propriate time interval to deliver the information specified
in the awareness description, e.g., when such a role is creat-
ed or becomes visible.

To provide awareness, CMI introduces several process-
oriented enhancements to generic event processing technol-
ogy. These include process-specific event operators, spe-
cialized event operators with built-in categorization for pro-
cess instances, and event operators that accept process-spe-
cific parameters.

The remainder of this paper is organized as follows: In
Section 2, we discuss some key requirements for awareness
provisioning that are not supported effectively by existing
technology and provide a critique of related work from the
perspective of supporting such awareness requirements. In
the following sections we discuss the corresponding CMI

solutions supporting process and situation awareness. In
particular, in Section 3 we outline CMI’s Collaboration
Management Model (CMM) for capturing collaboration
processes. In Section 4, we focus on the CORE of CMM
that provides the basis for developing CMI’s Awareness
Model (AM). AM is described in detail in Section 5. The
CMI system architecture and the AM implementation are
outlined in Section 6. The conclusion is in Section 7.

2. Requirements and Related Technologies
Although CMI is a general purpose technology that can

support many advanced applications [8, 7], in this paper we
motivate our work on awareness by focusing on CMI sup-
port for the crisis management domain. Similar awareness
requirements also exist in command and control, and tele-
communications service provisioning applications. The re-
quirements of collaboration processes from these applica-
tion domains are discussed further in [8, 7].

The basic objective of a crisis management application is
to facilitate the resolution, or at least the mitigation, of a cri-
sis situation. Crisis situations appear in virtually all parts of
government and economic life. They range from large scale
crises, e.g., natural or economic disasters, military tensions
and contentions, and epidemic outbreaks, to highly local-
ized crises, like simple accidents. The principal characteris-
tic of a crisis situation is that it occursunexpectedlyand that
its exact course is unknown and unpredictable.

While the response to an unfolding crisis may have a
large degree of unpredictably, an organization that responds
to a large number of similar crises will develop regularized
procedures and protocols for addressing the range of situa-
tions to which the organization must respond. The specifics
of these procedures may vary greatly from one crisis re-
sponse to the next, but the overall structure may have a great
deal of regularity. A crisis management application must fa-
cilitate the regularization of the crisis response, where ap-
propriate, but be flexible enough to accommodate the vari-
ation in the crisis response that can occur. Users who are co-
ordinated by a crisis response application must have the
power to make on-the-spot decisions that affect the evolu-
tion of the crisis response. As a corollary, the users must
have the relevant information at hand, i.e., awareness, so
that they can make timely and informed decisions.

As an example of dealing with a crisis, consider an epi-
demic response. Suppose a group of similar disease reports
is discovered in a region of the country. The health organi-
zation for that region would start a process responsible for
understanding the nature of the disease and containing the
outbreak. The process primarily involves information man-
agement including interviewing doctors and patients in-
volved, communication with the Center for Disease Control
or the World Health Organization, and communication with
news agencies and doctors involved in containing the out-

break. While the details of the process are specific to the
particular outbreak, the process involves practiced respons-
es that are tailored for the situation.

Figure 1 depicts a possible course of an information
gathering process as part of the overall epidemic crisis re-
sponse. Activities are illustrated by horizontal lines. Some
of these activities are always required, while others are op-
tional since they depend on current results and decisions
made by the process participants.

The process starts when the health agency becomes
aware of the outbreak through normal reporting channels.
The process ends when the nature of the pathogen is under-
stood and a strategy for containment has been developed
(another process would coordinate containment efforts).
Depending on the specific crisis situation, the leaders will
identify certain areas of interest and create task forces to in-
vestigate them. For example, a task force may be formed to
contact local hospitals and determine the extent of the out-
break. Another task force may work with those affected to
determine likely vector(s) of transmission. The assignment
of people is likely to occur after the crisis response process
has begun. Depending on the progress of the investigation,
task force members may decide to invited external experts
or do further lab tests. However, whether of not to issue an
additional lab test or acquire additional expertise depends
on the collective results of the process. Awareness provi-
sioning is a means of disseminating such information.

In such a crisis response process there are several basic
requirements that emerge form the perspective of awareness
provisioning. The first basic requirement is that task force
members need to be aware of the latest developments that
impact their work, such as the results of a lab test or a
change in deadlines that affect them. Therefore, to facilitate
the effectiveness of the experts involved in a crisis, crisis
management technology must filter out irrelevant informa-
tion and present to each participant only relevant informa-
tion in a digested form (to further increase information rel-
evance). As an example of this, consider the series of lab

tests conducted to assess the impact of the epidemic. Sup-
pose that if any of these tests is positive, the other tests are
not necessary. Providing awareness in this case may involve
notifying both the test requestor and those conducting the
alternative tests when a positive result is found. Such highly
relevant awareness provisioning is required to speed the
overall process and avoid wasted work.

Another requirement is to effectively determine the spe-
cific process participants that must receive each type of di-
gested awareness information. For example, participants in
the crisis response process often participate in task forces
whose composition is unknown before the process starts. In
such dynamically composed inter-organizational teams,
members play situational roles in addition to their organiza-
tional roles. Situational roles are bound to specific subpro-
cesses, i.e., they are exist only in a specific subprocess
scope. Suchscoped rolescannot be populated a priori; they
must be dynamically created and removed as needed by the
process. For example, an epidemiologist may be the task
force leader. While the epidemiologist role is an organiza-
tional role, the task force leader role is a scoped role and
may exist only as long as the task force process exists. A
task force leader typically requires different awareness than
epidemiologists who are simple task force participants.

Finally, in many situations awareness information must
be delivered to process participants while they are playing
scoped roles. For example, consider again the epidemiolo-
gist that plays the task force leader scoped role. If the lab
tests have been requested by his task force, then notification
of positive results must be directed to its leader. Other epi-
demiologists, may not need to receive this information.

From the previous discussion, the following awareness
requirements emerge:
• Customizedawarenessinformation is needed to reduce

information overloading and increase the relevance of
the information provided to the process participants.

• Awareness draws form both process-relevant data and the
external world.

• Process participants play scoped roles that may be
dynamically defined.

• Awareness information is directed to participants playing
scoped roles.
We are not aware of any existing collaboration manage-

ment technology that addresses these requirements. More
specifically, monitoring inWorkflow Management Systems
(WfMS) relates to awareness. Currently, there are standard
monitoring APIs available, such as the process monitoring
API provided by the Workflow Management Coalition Ref-
erence Model [10]. However, unless WfMSs users are will-
ing to develop specialized awareness applications that ana-
lyze process monitoring logs, their awareness choices are
limited to a few built in options and process-relevant events.
In particular, WfMSs currently assume that participants in a

Figure 1. Tasks During Crisis Information Gathering

Time

Information gathering process

Patient interview task force

Task force on hospital relations

Task force on vector of transmission

Local expertise

Media task force

: Process/activity

Lab test Lab test Lab test

Local expertise

process are either “workers” that need to be aware only of
the activities assigned to them, or “managers” that must
know the status of all the activities in the entire process, i.e.,
monitor the entire process. Similarly, groupware tools sup-
port only limited roles and corresponding awareness that
are specific to the intended use of each tool. For example,
groupware tools for network presentations, such as neT.120
[4], support “presenter”, “observer”, and/or “hybrid” roles.
Presenters are allowed to write on the shared whiteboard
and manipulate the application sharing tool, while observ-
ers can only observe (read) these resources. Users with hy-
brid tools can do both of these and they must negotiate and
perform coordination outside the scope groupware tools.

Some process oriented systems researchers have used
the termawarenessto describe notifications of specific pro-
cess activities. Elvin is a general publish/subscribe frame-
work that has been used as part of the wOrlds collaboration
system that supports workflows [1]. While Elvin could be
considered event-based, subscriptions are done with con-
tent-based filtering, but no other form of customized event
processing is performed. It is unclear if Elvin is used in di-
rect conjunction with wOrld's workflow enactment events.
InConcert WfMS [12] is an example of a process-oriented
system with e-mail notification of simple workflow condi-
tions, much in the spirit of this publish/subscribe awareness.
While the publish/subscribe model admits that a user will
consume the information, these systems provide no mecha-
nism to cater the information for specific roles/classes of us-
ers, nor do they address the issue of combining information
from multiple sources.

The term “awareness” has also been used in many col-
laborative systems (not managed by a process specification)
primarily to cover only information about one's fellow col-
laborators and their actions [18, 2, 16]. This limited form of
awareness is sometimes calledteleprescence[9]. One moti-
vation for teleprescence is that it allows users to readily de-
termine who is available at remote locations so that ad hoc
collaboration may be initiated [6]. However, ad hoc collab-
oration is less likely in a process-oriented environment
where the majority of tasks are coordinated by an explicit
process. Our notion of awareness largely subsumes the no-
tion of awareness in collaborative systems both because
more than just user information would be considered and
because a process model would be leveraged to improve in-
formation relevance.

Our concept of awareness follows in the spirit of Dourish
who advocates raising the level of abstraction through judi-
cious simplification of the “story a system tells about itself'”
[5]. His approach is quite similar to our notion of improving
the quality of awareness information through improved
contextual relevance. Awareness provisioning in CMI is
unique to our knowledge. CMI is the first process-oriented
system that can provide highly relevant information tailored

to the needs of specific roles process participants play. Fur-
thermore, CMI allows such awareness roles may be dynam-
ically created as needed.

To address the awareness requirements of advanced ap-
plications, such as crisis management, CMI combines an
advanced processes model with specialized composite
event detection technology. These are discussed in detail in
the remaining of the paper.

3. Collaboration Management Model (CMM)
CMM is an advanced process-oriented model supported

by CMI. It consists of aCore Model (CORE) and several
specialized extensions of it (Figure 2). The CORE provides
a common set of process model primitives that constitute
the basis for all extensions. The CMM extensions include
models designed specifically to support coordination,
awareness, services, and application-specific process mod-
els.

The Coordination Model (CM) provides primitives for
coordinating participants and for automating process enact-
ment. The Awareness Model (AM) is a CORE extension
that captures process monitoring and communication of
collaboration-related events. The Service Model (SM) sup-
ports reusable process activities and related resources, ser-
vice quality, and service agreements, as needed to support
collaboration processes in virtual enterprises. Further ex-
tensions can be introduced to support process evaluation
and prediction, as well as application-specific process mod-
els. Figure 2 indicates this by an application-specific exten-
sion atop of CM, SM, and AM.

The CMM is a processmeta model. An important design
decision is whether a process meta model provides a fixed
set of modeling primitives or extensibility of primitives via
meta-modeling. Meta types for primitives potentially allow
more expressive and flexible process models. However, this
is typically at the expense of increased complexity. The pro-
cess models of virtually all COTS WfMSs are examples of
models that provide only minimal meta-modeling capabili-
ties. In particular, process models in this category provide
meta types only for data resources. The dependency and
participant resource types are fixed and there is only a single

Service
Model
(SM)

Figure 2. CMM: CORE + Extensions

CORE

Application-specific

Awareness
Model
(AM)

Coordination
Model
(CM)

activity state type. At the other end of the spectrum is the ac-
ademicMOBILE WfMS [13] that supports the broad range of
resource and dependency meta types.

CMM is driven by the need to develop a reasonable com-
promise between the flexibility, expressiveness, and com-
plexity. In particular, as illustrated in Figure 3, CMM pro-
vides meta types for activity states (activity statemeta type)
and activities (basic activitymeta type andprocess activity
meta type). The activity state meta type is required to cap-
ture application-specific behavior of activities. The meta
types for activities can be used to develop application spe-
cific process models. For resources and dependencies,
CMM follows the approach deployed by COTS WfMSs. It
provides resource meta types (resourcemeta type), e.g., to
allow for user-defined resource types, and it prescribes a
fixed set of available dependency types (dependencytype).

To allow application modeling, CMM providesschemas
for activities, activity states, and resources. Schemas are ap-
plication-specific types that are created from CMM object
meta types during process specification. Thus, an applica-
tion model developed using the CMM comprises of a set of
resource, activity state, and process schemas that are instan-
tiated during application execution. Figure 3 shows a high-
level view of the basic primitives of the CMM, i.e., activity,
activity state, and resource meta types as well as dependen-
cy types, and how they are used to define activity and re-
source schema objects for applications.

Process activity schemas consist of an activity state vari-
able, activity variables, representing the subactivities of a
process, resource variables, describing the resources needed
during process execution, and dependency variables, defin-
ing the coordination rules for the subactivities, e.g., their or-

der of execution. All parts of a process schema are typed.
Basic activity schemas are restricted to an activity state vari-
able and a couple of resource variables. Note that the activ-
ity and resource variables in Figure 3 are generalizations of
the activity and resource primitives in the Workflow Man-
agement Coalition (WfMC) reference model [19] and simi-
lar primitives used in many commercial WfMSs.

Awareness provisioning is mainly supported by CORE
and AM. These are discussed in detail in Sections 4 and 5,
respectively.

4. CORE Model
The CORE defines the CMM activity states, including

both generic activity states and application-specific exten-
sion, and the CMM resources. An important resource type
that the CORE provides isscoped roles. This is a key re-
source type in awareness provisioning, since awareness
roles are typically scoped roles. Scoped roles are discussed
at the end of this section.

Activity states. Each activity schema contains an activi-
ty state variable that is associated with anactivity state sche-
mawhich determines the possibleactivity statesfor instanc-
es of the respective activity schema and correspondingstate
transitions. A transition from one activity state to another
constitutes a (primitive)activity event. Events enable CORE
to communicate information about activity execution.

Figure 4 shows thegenericactivity state schema defined
by the CORE. It is consistent with the proposed standard of
the Workflow Management Coalition [20]. Note that a
CORE activity state schema enumerates possible activity
states and state transitions, but it doesnot define how and
when a state transition occurs. CM enhances CORE’s activ-

Activity schema

Resource variable Activity variableDependency variable

Basic activity schema

Basic activity
meta type

A B: A is instance of B

A B: A is a B

A B: A contains B

1..* 1..*

1

Process activity schema

Resource schema

A B: A has type B

0..* 1..*1..*
relates

Activity state variable

Activity state schema

Activity state
meta type

Resource meta type Dependency (meta) type

1

1

(a) Input and output, helper resource variables
(b) Input and output, role and local data variables

(b)(a)
1 1

1..*

Figure 3. Basic Primitives of the CMM

Process activity
meta type

ities and activity states with operations that cause state tran-
sitions. The CORE’s resources are adopted by all submod-
els without further extensions. CM and SM are outside the
scope of this paper. The CM and SM submodels and their
implementation issues are discussed in [8, 7].

The generic activity states in Figure 4 capture applica-
tion independent behavior of activity instances. In addition
to the generic activity states, CORE capturesapplication-
specific statesof activities. This allows precise modeling of
the application. Other workflow process models, such as
METEOR [14] allow for the definition of arbitrary activity
states. This can lead to complex process models with activ-
ities that do not have common denominator with respect to
activity states. Therefore, the CORE’s activity state meta
model restricts the definition of application-specific activity
states to substates of already defined (application-specific)
states. This leads to a forest of activity states where the basic
activity states are the roots of the trees. A forest of activity
states together with the corresponding state transition dia-
gram comprise an activity state schema. Note that state tran-
sitions must only connect the leaves of the forest.

Resources.The CORE distinguishes four basic kinds of
resource types to be used during an activity execution: data,
helper, participant, and context resources. The data, helper,
and basic participant resources are similar to those found in
many workflow models and WfMS. In particular, the CORE
data resources correspond to the workflow internal and
workflow relevant data in the workflow literature [13, 10].
The helper resources are typically programs that provide
auxiliary resources to implement basic activities, such as a
text editor that is needed for a human to perform a writing
activity. Helper resources correspond to invoked applica-
tions of the WfMC standard [10].

In addition to the traditional data and helper resources,
CORE providescontextand advanced participant resources.
These novel resource types are critical in supporting crisis
management and many other advanced applications. The
context resourceis a collection of named resources (similar
to a record structure in programming languages). Context
resources can be accessed only via context references. This
enables the association of ascopewith any context re-
source.

Participant resources are either humans or programs.
That is, such resources capture actors in the real world that
take responsibility to start and perform activities. Both hu-

man and program individuals can play (one or multiple)
roles. Basic participant resources areorganizational roles.
Advanced participant resources arescoped roles. Scoped
roles are a cornerstone of AM.

Scoped roles.Such advanced roles can be can be dy-
namically created and exist only within a (context) scope.
Unlike usual organizational roles that are global,scoped
rolesare visible only to those activity instances that have ac-
cess to the enclosing context resource. Scoped roles can be
used in the same way within a process specification as usual
global roles.

Scoped roles are critical in supporting crisis manage-
ment applications. Building a task force, for example, may
involve selecting an epidemiologists as the task force leader.
The task force leader must keep track of the progress of the
task force’s work. This is not required for epidemiologists
that are not task force leaders. Task force-related roles must
be dynamically created and assigned to the specific individ-
uals that have been selected to participate in the task force.
In general, these roles are independent from the (static) or-
ganizational roles of these people, they are only valid inside
the task force, and their lifetime is restricted to the one of
the task force. Therefore, associating a context with a task
force enables the task force-specific roles to be modeled as
scoped roles. A similar situation appears in meetings: meet-
ing participants can play a different role during the meeting
than their organizational roles, e.g., meeting moderator or
presenter. Again, the introduction of a meeting context con-
taining scoped roles provides a solution.

5. AM Awareness Model
The AM is an extension to CORE that can provide timely

and highly relevant information to participants. Information
in AM is specified and delivered asawarenessevents. Such
events include activity state changes, resource status events,
and dependency status changes. Furthermore, AM allows
for the addition of application-specific event types. Aware-
ness events can be combined into composite awareness
events through the use of event operators. Delivery of de-
tected composite events can be directed to users in either
global or scoped roles.

In order to motivate the features of the awareness model,
we introduce an awareness example that illustrates a specif-
ic awareness requirement from the crisis response domain.
Suppose that as part of crisis response process, we have a
health crisis leader creating a task force to assess the
progress of an epidemic in a particular region. This involves
the invocation of a process that will coordinate the task
force. We will call this process thetask force process. In ad-
dition to specifying the task force members at the beginning
of this process, the health crisis leader is also prompted for
a deadline for the completion of the task force’s work. At
any point in the process’s lifetime, the leader may change

Figure 4. Generic Activity State Schema

Uninitialized

Ready
Running

Closed

Completed

Terminated

Suspended

B: A is substate of BA
State transition

the task force’s deadline dues to changes in the external sit-
uation. Suppose that the task force process includes an ac-
tivity that allows task force members to request external in-
formation. In particular, assume thatinformation requestis
a subprocess with a separate deadline for delivering the re-
quested information. The information request deadline
must be earlier than the task force deadline to allow integra-
tion of the requested information into the task force’s work.
Suppose that the leader changes the task force deadline after
an information request has been made. Providing awareness
in this situation involvesnotifying the information requestor
that the task force deadline has been moved earlier than the
information request deadline. Upon receiving this notifica-
tion, the requestor can renegotiate the request deadline or
cancel the request. Without the capabilities of AM, this no-
tification would either be impossible or require significant
programming using existing WfMS or groupware technolo-
gies. In Section 5.4, we revisit this example in more detail.

In AM, an eventcarries a set of name-value pairs called
event parametersthat give detail about what occurred. Be-
cause events are assumed to be self-contained, an event’s
parameters completely describe the event (e.g., include
type, time, and source). This differs from active databases
[21] where events may not be self-contained. Acomposite
eventis an event that is defined to occur as a result of some
non-empty collection of events called itsconstituent events.
Because events are self-contained, composite events sum-
marize the parameters of the constituent events. Composite
events may be constituents of other composite events. Non-
composite events, calledprimitive events, come from well
defined event producers—either from the enacted process
or the outside world.

AM provides an awareness specificationlanguage that is
used by awareness designers to constructawareness sche-
mas. Note that any process participant may be an awareness
designer, but this raises serious security issues that are out-
side the scope of this paper. Therefore, we assume that
awareness designers are process designers. Awareness
schemas define patterns of composite events, describe how
information from constituent events is to be digested, and
dictate to whom the result is to be delivered. Formally, an
awareness schemaASP on process schema P is defined to
be a triplet (ADP, RP, RAP), where ADP is anawareness
description, RP is anawareness delivery role, and RAP is an
awareness role assignment. ADP is a composite event spec-
ification over event sources visible in the process schema P.
Therefore, ADPspecifies awareness information in the form
of composite events. RP is a role visible in the scope of pro-
cess P that is resolved at composite event detection time to
a set of users who are candidates to receive the awareness
information specified in ADP. Finally, RAP defines what
subset of the users in the awareness delivery role will actu-
ally receive the information. Together, RP and RAP act as

delivery instructions for the awareness events detected by
ADP. The awareness description, awareness delivery role,
and awareness role assignment are discussed in more detail
in Sections 5.1, 5.2, and 5.3, respectively.

5.1. Awareness Description (AD)
The awareness description(ADP) is a composite event

specification that has been specialized for the processing of
process enactment events a process schema P. Acomposite
event specificationis a rooted, directed acyclic graph
(DAG) where the leaves of the DAG are primitive event pro-
ducers, the non-leaves are event operator instances, and the
edges are connections, i.e., typedevent streams, between
event producers and the consuming slots of event operator
instances. Anevent operatoris a self-contained, reusable
algorithm for recognizing instances of a pattern of constitu-
ent events and calculating the parameters of the resulting
composite events. An event operatorEopmay have a type
signatureEop(T1 , T2 , …, Tn) → TEop, where the operator
consumes events fromn producers with theith source con-
forming to typeTi and produces events of typeTEop. An in-
stance of an event operator is a running instance of the op-
erator’s algorithm which acts as a consumer of multiple
typed event streams, calledinputs, and produces a stream of
events called theoutput. An event operator instance can be
thought of as a computational pipeline that can produce any
number of output events for a single input event.

During execution of the specification, primitive events
enter the DAG at their associated leaves and flow to the in-
put slots of operators connected to those leaves. As compos-
ite events are generated, they flow to their consumers, which
are usually slots of other event operator instances. Compos-
ite events that are output from the root of the DAG are said
to be composite eventsdetectedby the composite event
specification. The entire composite event specification is an
event producer for events produced by its root operator in-
stance.

AM places restrictions on event producers and event op-
erators allowed in awareness descriptions. AM provides a
palette of event producers and general operators, however
application-specific event producers and operators can be
added as needed by the application. Event producers pro-
vided by AM are discussed in 5.1.1. The specialization of
AM event operators for process support and corresponding
operator properties are described in 5.1.2. Finally, the event
operators provided by AM are enumerated in 5.1.3.

5.1.1. Event Producers.In this section we discuss two
event producers that CMI currently implements: activity
state change events and context field change events. Addi-
tional event producers are anticipated and AM allows for
application-specific event producers.

An activity state change eventis produced each time a
CMI activity changes state. Formally, the primitive event
producerEactivityhas typeTactivitywith the following param-
eters:
• time— the time of the event;
• activityInstanceId— the activity instance id of the activ-

ity changing state;
• parentProcessSchemaId— the process schema id of the

activity's parent process, if the activity is not itself a top-
level process;

• parentProcessInstanceId —the process instance id of the
activity's parent process, if the activity is not itself a top-
level process;

• user— the user responsible for the state change, if any
• activityVariableId— the activity variable id of the activ-

ity changing state, if the activity is not itself a top-level
process;

• activityProcessSchemaId— the process schema id of the
activity, if the activity is a process;

• oldStateandnewState— the old and new states.
Recall from Section 4 that activity states and allowable

state changes are defined as part of an activity type's activity
state schema.

Section 4 defined a context resource as a named collec-
tion of other resources. Contexts are organized into name-
value pairs calledfields. A context field change event(or
context event) is produced each time a field in a context re-
source is modified. Because of resource scoping in CMM
process specifications, a context resource may be associated
with several process instances. Formally, the context event
producerEcontexthas typeTcontextwith the following param-
eters:
• time— the time of the event;
• contextId— the id of the context instance;
• {(processSchemaId, processInstanceId)}— a set of

tuples of process schema ids and process instance ids
recording the processes associated with this context;

• fieldName— the field name being modified;
• oldFieldValueandnewFieldValue— the old and new val-

ues of the field.
AM is open, i.e., it allows for application-specific events

to be added to those discusses above. In particular, AM al-
lows the graceful addition of event sources and event oper-
ators from outside the process enactment arena. Such event
sources may cover events related to information outside the
modeled business process or application-specific events
from automated systems not directly modeled in the busi-
ness process. For maximum synergism, external events
should be related to the process via application-specific
event operators. In the crisis response example, an external
event source may be from a news service that has found an
article for which a task force has registered an interest, per-
haps via an activity that creates a query based on user-sup-

plied keywords. An event from the news service would con-
tain a query id that can be related back to the process in-
stance through an application-specific event operator.

5.1.2. Specialization of AM Event Operators.AM event
operators must support the definition of meaningful aware-
ness descriptions that can be authored by a process/aware-
ness designer with minimal effort. To achieve these goals,
all AM operators are have been enhanced to directly under-
stand process instances, process nesting, and to work to-
gether with ease. In particular, AM operators have the fol-
lowing common properties:
• They output events of a canonical event type.
• They replicate their algorithm per process instance.
• They may be parameterized based on specific features of

the process schema to which they are associated.
Canonical Event Type.Nearly all operators take inputs

and produce outputs of a canonical event type, denotedCP,
associated with a process schemaP. The canonical event
type simplifies the task of the process/awareness designer
because it allows more freedom on how operators can be
combined in awareness descriptions and it allows for maxi-
mal event operator reuse. The canonical event type has
event parameters for the time of the event, the process sche-
ma and instance ids, as well as several generic parameters
whose meaning depends on the operator that generated it.
For example,intInfo is a generic information parameter.

Process Instance Replication.Awareness specifica-
tions are closely tied to process schemas, but a process sche-
ma may have an arbitrary number of instances. Each event
operator must therefore replicate its algorithm for each pro-
cess instance it receives events from. This is necessary so
that events are not mixed across process instances. Because
the process instance is a parameter on the canonical event
type, the operator may simply use that event parameter to
access its partitioned internal state. Because all operators in
an event description are replicated this way, the entire
awareness description is effectively replicated by process
instance.

Event Operator Parameterization. AM event opera-
tors are actually families of parameterized operators where
the parameters are instantiated per operator instance. Pa-
rameterized operators are declared as:

Eop[p1 , p2 , …, pm](T1 , T2 , …, Tn) → TEop,
where the positional event types consumed and the event
type produced are as before. The operator is parameterized
by moperator parameters that must be specified for each in-
stance of the operator. The parameters, which are specified
at design-time, customize the behavior of the event process-
ing algorithm embodied in the operator. Usually, the first
parameter will be P, the process schema associated with the
operator instance's containing awareness description,ADP.
Other parameters are usually constants or items associated

with the process schema P, e.g. an activity variable in P.
Event operator parameterization increases operator general-
ity with only a small increase in complexity.

5.1.3. AM Event Operator Taxonomy.AM provides fil-
tering, generic, count, comparison, andprocess invocation
event operators.These five categories of event operators are
described below.

Filtering Event Operators. A filter operator takes a
primitive event producer as input and outputs some subset
of those events as specified by the operator’s parameters.
Filtering event operators have a one-to-one correspondence
with the available primitive event types. AM provides activ-
ity and resource filter operators. Additional filter operators,
such as for event sources external to a process, can be added
as necessary.

For example, theactivity filteroperator is parameterized
by a process schema P, an activity variable in that process
schemaAv, a set of old states and a set of new states. In par-
ticular, Filteractivity[P, Av, Statesold , Statesnew](Tactivity) →
CP takes the activity state change event typeTactivity as in-
put, and emits an event of typeCP only when the activity
variable in that process makes a state transition from one of
the old states to one of the new states. Note that the only
source of events of that type isEactivity, the single source of
activity state change events. If the activity occurs in process
schema P (parentProcessSchemaId), and it is an activity as-
sociated with activity variableAv (activityVariableId), and
the old state of the event is in the setStatesold , and the new
state of the event is in the setStatesnew, then an output event
is generated.

The context filter operator, Filtercontext[P, Cname,
Fname](Tcontext) → CP, is parameterized by a process
schema, a context name, and a field name. It takes the prim-
itive context field change primitive event sourceTcontextas
input and outputs events of typeCP only when there is a val-
ue change to the specified field in a context of the specified
name associated with the specified process schema. Note
that the only source of events of that type isEcontext, the sin-
gle source of context state change events. If the context
event occurs that is associated with process schema P (in
processSchemaIdList), and the context name matches
Cname, and the context field name matchesFname, then an
output event is generated. When appropriate, the new field
value is copied to theintInfo output event parameter.

As we discussed in 5.1.1 for event sources, AM allows
the addition of filtering operators that can be attached to ad-
ditional primitive event sources as needed. For example, a
sentinel filter operator can be added to filter health crisis-re-
lated events as needed to support a specific participant role
in process for managing a crisis.

Generic Event Operators.Most event processing sys-
tems define basic operators for sequence, conjunction, and

disjunction. In the following paragraphs, we outline the AM
variations of these operators.

The conjunctionoperator,And[P, copy](CP, …, CP) →
CP, takes two or more (n) inputs of event typeCP and emits
an event of typeCP when an event has been seen on all input
slots. More specifically, the operator generates a composite
event when some input event,ei is seen on each input posi-
tion i, with no constraints on order. The operator parameter
copyis an integer (1 ≤ copy≤ n) that selects the input event
whose parameters (except time) will be copied to the output
composite event.

Thesequenceoperator,Seq[P, copy](CP, …, CP) → CP,
takes the same inputs as theAndoperator. The operator gen-
erate a composite event when an event has been seen on all
input slots in slot order. Thedisjunction operator,
Or[P](CP, …, CP) → CP, takes two or more (n) inputs of
event typeCP as input and merely echoes every input it re-
ceives as its output.

Count Event Operator. Thecountoperator maintains a
count of the number of input events seen (per process in-
stance) and it emits that value as theintInfo parameter on its
canonical output event.Count[P](CP) → CP, takes the
event typeCP as input and outputs an event for every input
seen. The count operator is most useful when combined
with the comparison operators, described next.

Comparison Event Operators.The single input com-
parison operator, Compare1[P, boolFunc1](CP) → CP,
takes the event typeCP as input. The operator generates a
composite event as output when theintInfo canonical input
event parameter (a generic integer value) satisfies the bool-
ean function,boolFunc1. In this case, the parameters of the
resulting composite event are copied from the input. If the
function is not satisfied, the input event is ignored.

The double input comparisonoperator,Compare2[P,
boolFunc2](CP, CP) → CP, takes two event producers of
typeCP as inputs. The operator generates a composite event
as output if inputs have occurred in both input positions and
the latestintInfo canonical input event parameters satisfy
the two-parameter boolean functionboolFunc2. In this
case, the parameters of the resulting composite event are
copied from the latest input, irrespective of its position.

Process Invocation Event Operator.Theprocess invo-
cationevent operator is the only operator that allows events
associated with one process schema to be translated into
events associated with a different process schema. This
translation is only meaningful if one process instance in-
vokes the other as a subprocess. The process invocation
event operator allows events associated with one process to
be translated to the equivalent event relative to its invoking
process. (Note that in order to combine events from two
process instances that are not directly related through a sub-
activity invocation, the processing must occur in a common
ancestor process, with one process invocation event opera-

tor used for every sub-activity invocation involved.) The
process invocation event operator,Translate[Pinvoking,
Pinvoked, Av](Tactvity, CPinvoked) → CPinvoking, takes two
event producers as input: one of the primitive activity event
type and an event producer of the invoked process
CPinvoking. The operator parameterAv is an activity variable
appearing in the process schemaPinvoking that invokes a
sub-activity of process schemaPinvoked. Input events are
translated only if an input event is associated with an in-
stance of the processPinvokedthat was invoked through ac-
tivity Av in the calling processPinvoking. If this condition is
not met, the input event is ignored. (The first event input,
Tactivity, is required in order to provide the necessary infor-
mation for the translation between process instances.)

5.2. Awareness Delivery Role (R)
Theawareness delivery role(RP) is a role that indicates

the participants of P who shall receive the awareness events
specified in the corresponding awareness description. An
awareness role may be either a global (organizational) role
or a scoped (dynamic) role visible to P. In CMI, awareness
delivery roles may differ from the roles used for process co-
ordination, but the same specification mechanisms apply,
regardless of usage.

As we discussed in Section 4, scoped roles allow AM to
tailor the awareness information for individual process par-
ticipants as needed to fulfill their responsibilities. For exam-
ple, in crisis management, scoped roles allow the customi-
zation and delivery of awareness to be performed while the
process is in progress. We are not aware of any other collab-
oration management technology that currently provides
such awareness capabilities.

5.3. Awareness Role Assignment (RAP)
Theawareness role assignment(RAP) allows a specific

subset of the awareness delivery role to actually receive the
information from the composite event recognized by the
awareness description. The awareness role assignment is an
arbitrary function on the set of users gathered by resolving
the awareness role that returns a subset of those users. The
function may choose users that should receive awareness in-
formation based on their load or whether they are currently
signed-on to the system. Currently, the only implemented
awareness role assignment function is the identity function,
implying that all users in the awareness delivery role will re-
ceive the information.

5.4. Awareness Schema Example
Consider again the problem of providing awareness of a

deadline violation that was introduced at the beginning of
Section 5. In modeling these processes, we assume that the
task force process creates a context (TaskForceContext)

which contains the task force’s membership (TaskForce-
Members) and the deadline (TaskForceDeadline) as fields.
This context would be passed to theinformation request
subprocess. The information request process creates its own
context (InfoRequestContext) containing, among other
things, a role for the requestor (Requestor) and the informa-
tion request deadline (RequestDeadline). The requestor is
the member of theTaskForceMembersrole who invoked the
information request. The requestor role is created explicitly
to identify the specific individual that requested the infor-
mation. This is necessary because there may be more than
one individual playing the task force member role. TheRe-
questorrole is a dynamically created awareness delivery
role that identifies the individual who will receive the dead-
line violation event. Furthermore, theRequestorrole disap-
pears upon completion of the information request process,
i.e., it is a scoped role. The deadline violation awareness
specification is as follows:ASInfoRequest =
(ADInfoRequest, InfoRequestContext.Requestor, Identity),
where
ADInfoRequest = Compare2[InfoRequest, <=](op1, op2),
and:
• op1 = Filtercontext[InfoRequest, TaskForceContext, Task-

ForceDeadline](Econtext), which emits an event upon cre-
ation or modification of the task force deadline and

• op2 = Filtercontext[InfoRequest, InfoRequestContext,
RequestDeadline](Econtext), which emits an event upon
creation or modification of the information request dead-
line.
The implementation of this awareness schema is dis-

cussed in Section 6.2.

6. Implementing Awareness Provisioning
In the following sections we discuss how CMI imple-

ments the awareness provisioning solution that is prescribed
by the AM. In Section 6.1, we outline the CMI system ar-
chitecture. Section 6.2 describes how awareness specifica-
tions are created in CMI. A description of the mechanism
for gathering primitive events at run-time is provided in
Section 6.3. The composition and processing of such event
is according to the awareness specifications is discussed in
Section 6.4. The resulting awareness information delivery
to the appropriate participants is elaborated in Section 6.5.

6.1. CMI System Architecture
The architecture of the CMI prototype is depicted in Fig-

ure 5. The CMI system follows a client-server approach
with the CMI Enactment System as the server. CMI lever-
ages several COTS (commercial, off-the-shelf) software
systems, most notably the commercial WfMS, IBM Flow-
Mark [11]. The CMI Client for Participants is a suite of
tools employed at run-time by users coordinated through

CMI processes. In CMI parlance, such users are calledpar-
ticipants. The Client for Participants contains a variant of
the traditional WfMS worklist, a process monitoring tool,
and a viewer for delivered awareness information. The CMI
Client for Designers is a suite of build-time tools that in-
cludes the Awareness Specification Tool.

The CMI Enactment System is a collection of communi-
cating agents acting as a single server. The components and
their interconnections largely resemble the interrelation-
ships between sub-models in CMM. The Awareness Engine
is primarily responsible for implementation of the CMM
Awareness Model (AM). However, additional awareness-
related functionality appears in both CMI clients.

The CMI awareness engine uses a specialized version of
CEDMOS. This is a general event processing system and it
is described in [3]. CMI specializations include those de-
scribed in Section 5.1.2. The CMI Awareness Specification
Tool is also a customization of the CEDMOS composite
event specification tool.

6.2. Awareness Specification
The CMI graphical awareness specification tool is a

build-time client for designers that allows the creation and
editing of awareness specifications as defined in Section 5.
The awareness specification GUI tool is a composite event
specification tool that hides much of the complexity of gen-
eral composite event specification from the designer. Each
window of the tool has a one-to-one association with a pre-
viously specified process schema; all awareness schemata
associated with that process schema are edited in that win-
dow.

Awareness specifications in CMI closely resemble the
awareness schemas from AM. Each awareness schema is a
rooted, directed acyclic graph (DAG) whose leaves are the
primitive event producers, interior nodes are event operators
and the root is a specialoutput eventoperator that adds de-
livery instructions to its input event. This operator has not
been previously discussed because it is an artifact of the im-

plementation that simplifies the awareness specification us-
er interface. The output operator's delivery instructions in-
clude the awareness delivery role and awareness role as-
signment, described in Sections 5.2 and 5.3, as well as a us-
er-friendly description of the event. Both interior nodes and
leaves may be shared amongst all awareness schemata
DAGs in an awareness specification window. The complete
set of awareness schemata associated with a process can
thus be thought of as a single, multiply rooted DAG.

A designer creates an awareness schema in three steps.
First, he places instances of the desired operators (as boxes)
in the awareness specification window, which always con-
tains distinct representations (diamonds) for each of the
primitive event sources. Second, he specifies the edges of
the DAG through a simple direct manipulation mouse inter-
action. Recall that the edges represent a connection between
an event producer and a positional slot of an event consum-
ing event operator instance. Each event operator has con-
straints on the cardinality and event types permitted for each
slot. Third, for operators that allow customization of their
behavior through parameterization, the designer can invoke
a dialogue-based operator-specific editor from an operator
instance, thus allowing him to specify parameters that cus-
tomize its behavior. A designer can rapidly author complete
awareness schemas without specialized knowledge of event
processing.

Figure 6 shows a typical awareness specification window
in the CMI awareness specification tool. The entire window
is associated with one process schema having two aware-
ness schemas, one of which is circled. The boxes are event
operators. The special output operator (seen here as Output)
encodes the awareness schema’s awareness delivery role
and awareness role assignment. The DAG that serves as the
input to the output operator is the awareness description.
Diamonds represent primitive event sources. The dark lines
are event connections between event producers and their
consumers. The awareness schema on the right hand side is

Figure 5. CMI System Run-time Architecture

CORE Engine

Coordination Engine Service Engine Awareness Engine

CMI Enactment System

CMI Client for Participants CMI Client for Designers
Process Specification
Awareness Specification
Service Specification
...

Worklist
Monitor
Awareness Information Viewer
...

CEDMOS
IBM FlowMark

NetMeeting

that of our example from Section 5.4. The constituent event
operatorsop1 andop2 are annotated for clarity.

6.3. Primitive Event Gathering
There are two main issues with primitive event gathering

in the AM implementation: (1) the kinds of primitive events
and (2) the mechanism to transmit them from their source to
the Awareness Engine for processing. Primitive event
sources in CMI consist of activity state change events and
context resource field change events described in Section
5.1.1. Depending on the source of the primitive event, a dif-
ferent software component may require instrumentation to
gather it. Activity state change events are gathered at the
Coordination Engine, for example, and context resource
field assignments are gathered from the CORE Engine.

The implementation of AM providesevent source agents
for gathering primitive events and delivering them to inter-
ested software components. Conceptually, the event source
agents in CMI are part of the Awareness Engine, though
they are tightly bound to the actual event sources.

6.4. Composite Event Processing
At build-time, the designer-specified awareness schema-

ta are automatically transformed into one or moredetector
agentsthat embody one or more awareness schemas. The
resulting agents become part of the Awareness Engine. The
agent(s) consume primitive events, perform the event pro-
cessing, and send recognized composite events, complete
with delivery instructions, to the awareness delivery compo-
nent, described next.

6.5. Awareness Delivery
Delivery of awareness information to the targeted partic-

ipants is orchestrated through two CMI components: the
awareness delivery agent, which is part of the Awareness
Engine, and theawareness information viewer, which is
part of the CMI Client for Participants. The awareness de-
livery agent consumes all composite events of the type pro-
duced by the special output operator that was added in the
awareness provisioning implementation. Recall that the
output event operator adds delivery instructions to its input
event. When the agent receives such an event, it resolves the
awareness delivery role and awareness role assignment
from the event's delivery instructions to a set of participants
through an interaction with the CORE Engine. The infor-
mation from the event is then queued for each participant in
the set. A persistent queue is necessary because a partici-
pant is not assumed to be logged-on to the system when he
receives an awareness event. The awareness information
viewer in the CMI Client for Participants is responsible for
registering an interest in the event queue for its user, retriev-
ing event information, and displaying it to him. Issues of
event aggregation, priority, notification mechanisms, and
follow-on actions are under further consideration.

7. Conclusion
Existing technology for collaboration management typi-

cally offers only a few built-in choices for providing infor-
mation to the humans and applications participating in a
collaboration process. These typically include some dis-
crete choices such as the list of the process activities a par-
ticipant has to perform (worklist items), information about
the status of specific shared process resources (document or
whiteboard status), or information about every activity and
resource in the process (monitor data). In many advanced
applications these built-in choices either overload partici-
pants with information, or the participants have to use com-
plementary tools to gather or communicate information not
provided. The main contribution of this paper is the ability
to tailor the awareness information for individual process
participants as needed to fulfill their responsibilities. Fur-
thermore, in applications that involve dynamic change, such
as crisis management, the proposed technology allows the
customization and delivery of awareness to be performed
while the process is in progress. This is accomplished by
supporting (dynamic) context-specific roles. We are not
aware of any other collaboration management technology
that currently provides such awareness capabilities.

The CMI system has been successfully used in a DAR-
PA-funded demonstration in the intelligence gathering do-
main. The demonstration involved the specification of nine
collaboration processes with more than fifty CMM activi-
ties. Some of these processes are open-ended, i.e., they may
last anywhere from 15 minutes to several weeks. CMM ac-

Awareness Role Assignment

op2op1

Awareness Delivery Role &

Awareness Schema

Awareness Description

Figure 6. The CMI Awareness Specification Tool

Context EventActivity Event

tivity translation into the commercial WfMS used by the
CMI system resulted into a few hundreds of WfMS activi-
ties. In addition we developed eight awareness specifica-
tions and thirty basic activity scripts for creating and man-
aging context resources. We discovered no CMM limita-
tions in capturing the crisis management processes. The
CMI system provided all required functionality for support-
ing the specified crisis management processes. In most cas-
es, the worklist, awareness, monitoring, and hybrid tools
provided sufficient GUIs for coordinating the processes par-
ticipants, and provided functional awareness.

References
[1] Bogia, D.; Kaplan, S.M.: Flexibility and Control for Dynamic

Workflows in the wOrlds Environment. InACM Conf. on Or-
ganizational Computing Systems, 1995. Available via http://
www.dstc.edu.au/worlds/Papers/abstracts.html.

[2] Brinck, T.; McDaniel S.E.: CHI 97 Workshop on Awareness
in Collaborative Systems. InProc. of CHI’97: Human Fac-
tors in Computing Systems, 1997. Position papers available
via http://www.usabilityfirst.com/groupware/awareness/.

[3] Cassandra, A.R.; Baker, D.; Rashid, M.: CEDMOS: Complex
Event Detection and Monitoring System.MCC Technical Re-
port CEDMOS-002-99, MCC, Austin, TX, 1999.

[4] DataBeam: neT.120. http://www.databeam.com/net120/,
1999.

[5] Dourish, P.; Accounting for System Behaviour: Representa-
tion, Reflection, and Resourceful Action. InProc. of Comput-
ers in Context (CIC’95), 1995.

[6] Dourish, P.; Bly S.: Portholes: Supporting Awareness in a
Distributed Work Group. InCHI’92 Conf. Proc.: Human
Factors in Computer Systems, 1992.

[7] Georgakopoulos, D.; Schuster, H.; Cichocki, A.; Baker, D.:
Managing Process and Service Fusion in Virtual Enterprises.
MCC Technical Report CMI-015-99, MCC, Austin, TX,
1999.

[8] Georgakopoulos, D. ; Schuster, H. ; Cichocki, A.; Baker, D. :
Collaboration Management Infrastructure in Crisis Response
Situations.MCC Technical Report CMI-009-99, MCC, Aus-
tin, TX, 1999.

[9] Gutwin, C.; Greenberg, S.; Roseman, M.: Workspace Aware-
ness in Real-Time Distributed Groupware: Framework, Wid-
gets, and Evaluation. InPeople and Computers XI (Proc. of
HCI’96), 1996.

[10] Hollingsworth, D.: Workflow Management Coalition The
Workflow Reference Model. Workflow Management Coali-
tion, Document Number TC00-1003, Issue 1.1, 1995. Avail-
able via http://www.wfmc.org.

[11] IBM FlowMark - Managing Your Workflow. IBM, http://
www.software.ibm.com/ad/flowmark/, 1996.

[12] InConcert: InConcert. http://www.inconcertsw.com/wel-
come.htm, 1999.

[13] Jablonski, S. ; Bußler, C.:Workflow Management - Modeling
Concepts, Architecture and Implementation. International
Thomson Computer Press, 1996.

[14] Krishnakumar, N.; Sheth, A.: Managing Heterogeneous
Multi-System Tasks to Support Enterprise-Wide Operations.
In: Distributed and Parallel Databases, An International
Journal, Vol. 3, No. 2, 1995.

[15] Microsoft: NetMeeting. http://www.microsoft.com/netmeet-
ing/, 1999.

[16] Pedersen, E.R.; Sokoler, T.: AROMA: Abstract Representa-
tion of Presence Supporting Mutual Awareness. InConf.
Proc. Human Factors in Computing Systems (CHI’97), 1997.

[17] Segall, B.; Arnold, D.: Elvin Has Left the Building: A Pub-
lish/Subscribe Notification Service with Quenching. InProc.
of the 1997 Australian UNIX and Open Systems Users Group
Conference (AUUG’97), 1997. Available via http://
www.dstc.edu.au/Elvin/.

[18] Sohlenkamp, M.; Chwelos, G.: Integrating Communication,
Cooperation, and Awareness the DIVA Virtual Office Envi-
ronment, InProc. of the Conf. on Computer Supported Coop-
erative Work (CSCW’94), 1994.

[19] Workflow Management Coalition:Interface 1: Process Defi-
nition Interchange Process Model. Document Number
WfMC TC-1016-P, Version 7.04, November 1998. Available
via http://www.wfmc.org.

[20] Workflow Management Coalition:Workflow Management
Application Programming Interface (Interface 2&3) Specifi-
cation. Document Number WfMC-TC-1009, Version 2.0e,
July 1998. Available via http://www.wfmc.org.

[21] Zimmer, D.; Unland, R,.: The Formal Foundation of the Se-
mantics of Complex Events in Active Database Management
Systems.Technical Report 22/1997, C-LAB, Paderborn Ger-
many, 1997. Available at http://www.c-lab.de/~aatools/exter-
nal/1997/cr97_22.ps.gz.

