
Taggers for Parsers

Eugene Charniak,

*

Glenn Carroll,

*

John Adcock,

**

Anthony Cassandra,

*

Yoshihiko Gotoh,

**

Jeremy Katz,

*

Michael Littman,

*

and John McCann

*

Department of Computer Science

*

and

Division of Engineering

**

Brown University, Providence RI 02912

Correspondence should be addressed to Eugene Charniak, De-

partment of Computer Science, Box 1910 Brown University,

Providence RI 02912.

Abstract

We consider what tagging models are most appropriate as front

ends for probabilistic context-free-grammar parsers. In particular, we

ask if using a tagger that returns more than one tag, a \multiple

tagger," improves parsing performance. Our conclusion is somewhat

surprising: single-tag Markov-model taggers are quite adequate for

the task. First of all, parsing accuracy, as measured by the correct

assignment of parts of speech to words, does not increase signi�cantly

when parsers select the tags themselves. In addition, the work required

to parse a sentence goes up with increasing tag ambiguity, though not

as much as one might expect. Thus, for the moment, single taggers

are the best taggers.

1 Introduction

Recent years have seen a spate of research on various techniques for \tagging"

| assigning a part of speech (or \tag") to each word in a text [1,2,8,9,11,12,

13,15,16]. Consider the following example:

The can will rust

article modal-verb modal-verb noun

noun noun verb

verb verb

Under each word we give some of its possible parts of speech in order of

frequency. The correct tag is given in bold font.

One justi�cation for tagging research is that a tagger can serve as a front

end to a parser: the tagger assigns the tags to the incoming words and thus

the parser can work at the tag level, where parsers do best. This raises

questions of how well di�erent types of taggers work as front ends to parsers.

Despite the abundance of work on taggers, these questions have yet to be

addressed; it is still uncommon actually to read of a tagger used with a

parser, and when one is so used there is no analysis of suitability.

This question becomes more important because of two strands within

tagging research. While most taggers return a single best tag for each word

(we call these \single taggers"), some work has been done on taggers that

return a list of possible tags in those cases where a second (or even third)

1

best choice might be close to the best according to the tagger's metric [3,13,

15] (we call these \multiple taggers"). One obvious reason to do this would

be to let the parser make the �nal decision. For example, the section on

multiple taggers in [15] starts by observing that

even with a rather low error rate of 3.7%, there are cases in which

the system returns the wrong tag, which can be fatal for a pars-

ing system trying to deal with sentences averaging more than 20

words in length.(p. 366)

In this paper we address the question whether single or multiple taggers

work best with current probabilistic context-free grammar (PCFG) parsers.

We also consider the extreme \multiple-tagger" position of allowing the

parser to select among all tags to which the word model (i.e., dictionary)

assigns a non-zero probability. This is equivalent to having a grammar which

has actual words as terminals.

2 The Taggers

All of the taggers used in our experiments are statistically based. (This is

as opposed to, e.g., the transformationally based taggers of [2,3]. We have

no reason to believe that anything said here hinges on this choice; we are

simply more familiar with the statistical tagging technology.) Creating a

statistical tagger �rst requires a tagged corpus | a text or set of texts in

which every word has been assigned its correct tag by hand. The tagged

corpus is then divided into two disjoint sets of sentences, a large set used for

\training" | collecting the statistics needed by the tagger | and a smaller

set for \testing" | determining how well the tagger can �nd the correct tag

sequence.

We built three statistically based taggers. The �rst is a traditional sin-

gle tagger. This kind of tagger returns the tag sequence t

1;n

maximizing

P (t

1;n

j w

1;n

), where w

1;n

is a sequence of n words and t

1;n

are the corre-

sponding n tags. To put this into words, for a sentence of length n the

tagger tries to �nd the tag sequence t

1;n

that has the highest probability

given the words of the sentence, w

1;n

. (For those familiar with the statistical

literature, it �nds this sequence using the standard Markov-model Viterbi

algorithm.)

2

Second, we built a tagger that computes P (t

i

j w

1;n

) for each tag. This

di�erers from the �rst tagger in that the �rst �nds a tag sequence for the

entire sentence \all at once," while the second looks at each position in the

sentence and computes the probability for each possible tag for that word.

This kind of tagger is better if one wants to �nd multiple tags for a given

word. For example, for the sentence given earlier, \The can will rust." the

tagger computes the probability that \will" is a noun, that it is a modal, etc.

Thus one knows not just the most probable part of speech, but also the second

most probable, etc. We also know how great the di�erence is between the �rst

choice and the second, the second and third, etc. So while the �rst tagger

returns what it considers the best overall tag sequence, the second tagger

can identify alternative tags at a position with tag probabilities close to the

best. (More formally, it computes the tag probabilities using the standard

Markov-model forward-backward algorithm (as in [15]) and returns all tags

t

j

such that P (t

j

j w

1;n

) � �P (t

b

j w

1;n

), where t

b

is the best (most probable)

tag for that position and � is a system parameter such that 0 � � � 1. The

closer � is to 0, the more tags are returned.)

The third tagger we created is an \all tagger" that simply returns all tags

with non-zero probability for that word. E.g., for \will" it returns \modal-

verb," \noun," etc.

All the taggers share the same probabilistic model, that is, the same

way of computing the probabilities of tag sequences given the words of the

sentence. The model is based upon the reasonably standard bigram tagging

model:

argmax

t

1;n

n

Y

i=1

P (w

i

j t

i

)P (t

i

j t

i�1

) (1)

Here arg max

t

1;n

says to �nd the tag sequence t

1;n

that maximizes the quan-

tity that follows. Within the product, for each tag t

i

we compute the product

P (w

i

j t

i

)P (t

i

j t

i�1

). The �rst of these terms, P (w

i

j t

i

), is often called the

\word model" in that it causes the tagger to prefer tags that are common for

the word in question. The second term, P (t

i

j t

i�1

), is called the \tag-context

model" as it tends to make the tagger prefer tags that are likely to come after

the tag for the previous word. For more on such equations, see [7].

It is the responsibility of the training phase to collect these two kinds of

probabilities. However, a common problem for statistical taggers is that the

set of examples found in the training data is not exhaustive, so that in the test

3

data the tagger encounters unforeseen situations. A typical case is when the

tagger encounters a word it has not previously seen. In this case P (w

i

j t

i

),

the probability of the word given the tag, is zero for all possible tags and

the tagger \blows up." The solution is to \smooth" the data collected in

the training phase so that these situations have not zero probability, but

rather some low probability, presumably based upon some kind of auxiliary

evidence. The rest of this section describes how this is done in our tagger.

It is included for completeness | nothing in the rest of the paper depends

on it | and can be skipped without penalty.

We used a 300,000-word subset of the tagged Brown Corpus [10] for train-

ing. We assume that, even with this relative small training corpus, it is not

necessary to smooth the estimated P (t

i

j t

i�1

). In these experiments we deal

with 19 tags, so estimating P (t

i

j t

i�1

). requires �nding only 361 (= 19

2

)

parameters. As noted above, however, it is crucial to smooth P (w

i

j t

i

) to

estimate this probability for words that do not appear in the training corpus.

Our approach is to handle words that appear in the training corpus sepa-

rately from words that do not. For the latter, we combine the probability

that an unknown word has a particular tag with the probability that a word

with a given tag ends with a certain pair of letters. The second probability

approximates the information provided by a morphological analyzer: words

that end in \ed" are likely to be verbs, \ly" adverbs, etc. (We thank L.

Boggess for this suggestion.) More formally, let e

i

denote the �nal two let-

ters of w

i

and let k

i

indicate whether w

i

has been seen in the training data,

in which case k

i

= 1, otherwise k

i

= 0. Probabilities that are estimated from

counts in our corpus are designated with a circum
ex, as in

^

P (x j y):

P (w

i

j t

i

) = P (w

i

; k

i

j t

i

) (2)

�

=

^

P (k

i

j t

i

)P (w

i

j t

i

; k

i

) (3)

�

=

^

P (k

i

j t

i

) � (4)

h

k

i

^

P (w

i

j k

i

= 1; t

i

) + (1� k

i

)P (w

i

j t

i

; k

i

= 0)

i

Equation 2 follows because once we know w

i

we know k

i

. In Equation 4

we consider the two k

i

cases separately. If we know the w

i

(if it was in the

training corpus) then k

i

= 1. In this case we use the information collected

on the word from the training data. If we have not seen the word (this is the

(1� k

i

) case) we need to come up with the probability P (w

i

j t

i

; k

i

= 0). We

4

consider this term next. (In this discussion we represent k

i

= 0 as :k

i

.)

P (w

i

j t

i

;:k

i

) = P (w

i

; e

i

j t

i

;:k

i

) (5)

= P (e

i

j t

i

;:k

i

)P (w

i

j t

i

;:k

i

; e

i

) (6)

�

=

P (e

i

j t

i

)P (w

i

j e

i

) (7)

/ P (e

i

j t

i

) (8)

/ (1� �)

^

P (e

i

j t

i

) + � (9)

In Equation 5 we can add e

i

because it is determined by w

i

. Equation 7 in-

corporates two independence assumptions that allow us to collect reasonable

statistics:

P (e

i

j t

i

;:k

i

) = P (e

i

j t

i

) (10)

P (w

i

j t

i

;:k

i

; e

i

) = P (w

i

j e

i

) (11)

Equation 10 assumes that the probability of a given word ending is inde-

pendent of whether the word is in our training corpus (reasonable enough).

Equation 11 assumes that the probability of a word given its ending is in-

dependent of both (a) its absence from the training corpus, and (b) its part

of speech. The second of these is not true, but seems unlikely to a�ect us

much. Going back to Equation 8, we drop consideration of P (w

i

j e

i

): we

are looking for the tags that make our overall probability highest, and since

the words and endings are the same for all tag sequences, P (w

i

j e

i

) can be

ignored. Finally, in Equation 9 we smooth the

^

P (e

i

j t

i

) statistics so that if

this word ending has never appeared at all, all tags are considered equally

likely. (With 26 characters and 19 tags,

^

P (e

i

j t

i

) involves 12844 (= 26�26�19)

parameters. Because of our comparatively small training corpus this requires

smoothing.)

3 The Parser

The parser used in this experiment is a relatively standard chart parser.

Chart parsers take a grammar for a language and a string (called a \sen-

tence") and, if the string is in the language, output a \chart" that encodes in

compact form all of the parses for the string. The grammar is expressed as a

set of probabilistic context-free rewrite rules. The parser works by matching

5

the rules of the grammar against the constituents of the sentence (or con-

stituents produced by the successful completion of other rules). In so doing it

creates \edges," a data-structure that records the fact that the initial portion

of some rule is matched by some sequence of constituents.

The input to the parser is not the actual words of the sentence, but rather

the output of the tagger. Thus in the case of our single tagger, the parser's

input is a sequence of tags, one corresponding to each of the words in the

sentence. For a multiple tagger we have not a single tag corresponding to

a word but rather a set of tags, namely the tags that the multiple tagger

reported for that word. In the case in which we do not really use a tagger

at all, the \all tagger," this set corresponds to all possible tags for the word.

When the parser gets more than one possible tag, it constructs all parses with

all possible combinations of the tags. That is to say, the parses do not agree

on the tags for the words. For example, in the standard ambiguous sentence

\Time
ies like an arrow" the parse that comments on how time is
eeting

will tag \time" as a noun, while the parse which commands to listener to

measure how long
ies take to do something will tag \time" as a verb. It is

possible, however, for the parser to (in e�ect) pick a single preferred set of

tags by choosing those used in the most probable parse. Thus if the \time is

eeting" parse is most probable, \time" will have a noun tag.

For the reader familiar with chart-parser technology, we note that our

parser incorporates two reasonably common optimizations. First, it uses top-

down �ltering (an edge starting at location l is not produced unless there is

some possible parse of the words w

1;l�1

that could use an edge of this sort

starting at l). Second, several would-be edges are collapsed into one when

they are identical except for their predictions of subsequent constituents.

This signi�cantly reduces the number of edges.

The grammar used with the parser is the product of some related work

on PCFG induction [5]. It consists of about 3500 rewrite rules (brevity was

sacri�ced for ease of learning) with 19 tags. We expected it to outperform

our tagger in its ability to tag ambiguous words, as its per-tag cross entropy

is about .07 bits/tag lower than the tagger's (more on the signi�cance of this

later). To get some feeling for what such numbers mean, we used our PCFG

to construct an arti�cial corpus consisting of tags only. For this corpus our

PCFG should give the lowest bits/tag of any model and in fact it outperforms

the single-tagger by .15 bits/tag. That our grammar (when tested on the real

corpus) performs at about half this level we consider quite good.

6

One detail of the linkage between parser and tagger deserves further dis-

cussion. When we allow the tagger to report more than one tag to the

probabilistic parser, what probabilities should be associated with the tags?

The answer to this is fairly straightforward, though not completely intuitive.

If the words w

1;n

are a sentence, we want the parser to �nd the most probable

parse tree � for this sentence, as shown here:

arg max

�

P (� j w

1;n

) (12)

This is equivalent to maximizingP (�;w

1;n

). In a context-free grammarmodel

this is in turn equivalent to maximizing the product of the probabilities of

the rules used in the parse. If P(�) are the rules used in the parse �, then

we want to �nd the � which maximizes the following quantity:

Y

r2P(�)

P (r) (13)

Note that if we want this to produce P (�;w

1;n

), then the rules in P(�) must

have as their terminal symbols the actual words of the sentence, not just the

parts of speech. Thus we can think of the rules of our grammar as being of two

sorts, the phrase-marker rules, and a set of \lexical" rules of the form t! w

(e.g., for the noun \banana" we would have noun ! banana). Naturally,

in the computation we need associated with each lexical rule its probability

P (t! w). With a little thought one can show the following equality:

P (t! w) = P (w j t) (14)

See, for example, [4].

Now when we talk of attaching a parser to a tagger we are assuming that

the parser has rules that break constituents down to the part-of-speech level,

what we called the phrase-marker rules, but that the tagger replaces the lexi-

cal rules. Nevertheless, we still want to maximize the quantities in Equations

12 and 13. Thus the probability associated with the tags provided by the

tagger should be P (t ! w) to keep the computation the same. But accord-

ing to Equation 14 this is just P (w j t), which, as already seen in Equation

1, we need for our tagger anyway. Thus associated with each recommend tag

the tagger also provides P (w j t) for the word-tag combination.

Note in particular that this means we should not try to do anything

\fancy" like returning with the tag the probability assigned to it by the

7

tagger. That is, in the case of multiple taggers we compute P (t

i

j w

1;n

),

and one might consider using this number. The above argument suggests

that this is not the right thing to do. Note that this is somewhat analogous

to using P (t j w) rather than P (w j t) in Equation 1; for some time there

was confusion on this point in the tagging literature, but this leads to a

suboptimal result (see [7])

4 The Performance Measures

We use �ve performance measures in this study, four of which are straight-

forward. First, we measure the parser's computational e�ort in terms of the

average number of edges generated in the course of parsing a sentence. The-

ory says that edges should be linear in parser e�ort, and a quick check shows

a very good straight-line �t between number of edges and parser time (with

a coe�cient of about 2000 edges/second for our Sun Sparc 10's). Second, we

measure how many tags are handed to the parser by the tagger in terms of

average number of tags per word. Our third and fourth measures are per-

centage of words and sentences parsed by the parser. We use both measures

because word percentage is a more natural �gure for a tagger, while sentence

percentage is the more natural for a parser. When given just the correct tags

(each assigned probability 1.0), the grammar we use is able to parse 99.5%

of the words and 99.6% of the sentences.

The �nal performance measure is designed to capture correctness of parser

behavior as we change how many tags the parser sees. We decided to use

tagging accuracy as this measure. More speci�cally, for each sentence parsed

we extract the most probable parse, and from that we obtain the parts of

speech assigned to the words in that parse. We then count the percentage of

these words that agree with the hand-assigned tags. Arguably this is not the

best measure of parsing accuracy, since ultimately the measure of a parser's

performance is its ability to �nd the correct phrase-marker for a sentence.

However, to measure this one needs a source of agreed-upon parses for the

sentences. While there are now tree-banks of some size [14], they of necessity

make assumptions about grammatical formalism. As these assumptions do

not �t the grammar we use, we cannot exploit these resources.

On the other hand, using tagging accuracy for our performance measure

has some advantages. First, tagging is much less sensitive than parsing to

8

Tagger Percent Percent % Tagged Tags Average

Sentences Words Words per Edges

Parsed Tagged Tagged Word per

(Parsed) Correctly Sentence

Single N/A 100% 95.9% 1.0 N/A

Tagger

Single Tagger 99.2% 99.5% 95.9% 1.0 1246

+ Parser

All Tagger 100% 100% 96.1% 2.15 4988

+ Parser

Pure 99.6% 99.5% N/A 1.0 1231

Parser

Figure 1: Taggers and their e�ect on parsing

the grammatical formalism one adopts. Second, although it is perfectly pos-

sible that a parser could get the tags correct while completely botching the

parses, one would nevertheless expect, barring some \conspiracy," that the

two measures would go up hand in hand.

5 Results

Training and testing of taggers and the PCFG were done on a 307885 word

subset of the tagged Brown Corpus [10]. This includes all sentences of length

greater than 1 (i.e., sentences having a symbol other than the �nal punc-

tuation mark) and less than 23 that do not include foreign words, titles, or

certain symbols, most notably parentheses. Testing was done on a 9631 word

reserved subset of this subset, training was done on the rest. The Brown Cor-

pus tagset contains between 70 odd and 400 odd tags, depending on how one

counts. We map these automatically into the 19 tags used by the tagger and

parser.

The overall results of the experiment are summarized in Figure 1. We

give results for our single tagger, for the single tagger combined with our

parser (single tagger + parser), and for the parser when it receives all non-

9

.5 1 1.5 2

1000

2000

3000

4000

5000

�

�

�

�

�

�
�

�

�

�

Edges

Tags

Figure 2: Average number of edges per sentence as a function of average

number of tags per word

zero-probability tags for each word (all tagger + parser). Lastly we include

data for the parser when it receives just the correct tags (pure parser) to

provide a baseline for comparison. Some results for the multiple tagger are

discussed later.

The percentage of sentences and words parsed is high. The percentage

of words parsed (99.5%) with the single tagger is the same as that for the

grammar when given the correct tags, the percentage of sentences parsed

is slightly lower (99.2% vs. 99.6%). Thus the single tagger does not have

a signi�cant e�ect on the coverage of the parser. When the parser is given

all non-zero-probability tags the percentage of sentences parsed goes up to

100%, but, as we shall see, one should not make too much of this. More

importantly, the restriction of our parser measurements to those sentences

that were successfully parsed should have no signi�cant biasing e�ect, since

the parsing percentage is so high.

The two rightmost columns of Figure 1 show that as the number of tags

per word goes up the number of edges does as well. Figure 2 shows in more

detail the relations between the number of tags and the number of edges

produced by the parser (controlled by varying � in the multiple tagger).

Somewhat surprisingly, we do not see a blowup in parsing expense, even at

the most permissive tagging rate. Our intuition was that an average of two

tags per word would lead to an explosion in the number of parses, particularly

10

for sentences of length 10 or more (a little more than half the corpus). In

a technical report version of this paper [6] we show that adding a single tag

could lead to a cubic increase in the number of edges. Figure 2 indicates that

we are far from such a worst case. Part of this e�ciency doubtless comes

from the encoding of parses in the chart, allowing a few additional edges to

represent a great many additional parses. In addition, our worst-case analysis

requires a starting parse in which the edge count is linear in the length of the

sentence; for our data, the edge count grows approximately as the square of

sentence length.

The critical data in the table, however, are the percentage of words tagged

correctly. Here we consider only the words that are actually tagged (i.e.,

unparsable sentences are ignored). We observe that when given all non-

zero-probability tags, the parser is hardly more accurate than the tagger.

The di�erence between 95.9 and 96.1 is at the ragged edge of statistical

signi�cance. We believe this di�erence is probably real, but the important

question is whether anyone wants such a small improvement when it comes

with a fourfold increase in work. Thus, from this data it does not seem that

giving our parser extra tags is worth the e�ort. This is why we do not bother

with the more detailed statistics for the multiple tagger with di�erent �'s.

This analysis also suggests that the increase in parsing percentage for the \all-

tagger" case comes about not because the parser is correcting the tagger's

mistakes but because, given enough tag options, the parser can manage to

�nd at least one tag sequence that �ts its grammatical rules.

6 Analysis

The result crying out for explanation is the parser's inability to tag words

signi�cantly better than the tagger. This section looks at this issue in detail.

One possible explanation is that our grammar is simply a poor one: perhaps

better grammars would get better results. In this section we argue that this

is not the case. We hold that any PCFG o�ers only the most modest tag

accuracy improvements over single taggers, and that these improvements are

simply not worth their cost in extra parsing e�ort.

We start with a heuristic argument. As we have already noted, the idea

that a parser should be able to tag better than a tagger stems from the

assumption that the parser can predict the next tag better than a tagger.

11

That is, in standard statistical tagging models we look for:

arg max

t

1;n

n

Y

i=1

P (w

i

j t

1;i

)P (t

i

j t

1;i�1

) (15)

We called P (w

i

j t

1;i

) the \word model" and P (t

i

j t

1;i�1

) the \tag-context

model." The idea is that as we plug in better tag-context models our tagging

improves.

This is surely true, but to what degree? To suggest an answer to this

question, note that there is an independent measure of the quality of tag-

context models, their per-tag cross entropy. We do not go into detail here

(see [4]) but simply note that, given a well-behaved corpus of n words, the

per-tag cross entropy is well approximated by

�

1

n

logP (t

1;n

) (16)

The lower the cross entropy the better the model. So let us look at how

tagging improves as the cross entropy decreases.

A common reference point for tagging models is the tagger that simply

assigns to each word its most common tag. We can recast this model in the

form of Equation 15 as follows:

arg max

t

1;n

n

Y

i=1

P (w

1

j t

1;i

)P (t

i

j t

1;i�1

) � argmax

t

1;n

n

Y

i=1

P (t

i

j w

i

) (17)

= argmax

t

1;n

n

Y

i=1

P (w

i

j t

i

)P (t

i

)

P (w

i

)

(18)

= argmax

t

1;n

n

Y

i=1

P (w

i

j t

i

)P (t

i

) (19)

(In Equation 18 we expand using Bayes' law, and then in Equation 19 ignore

the denominator, P (w

i

), as it is constant for all t

1;n

.) Thus for this tagger

the tag-context model is simply the probability of the tag out of context. For

our tag set, the cross entropy of this model is 3.61 bits/tag. It is common

knowledge that such models give about 90% tagging accuracy. A result of

91.5% is given in [7] and that is the �gure we use here.

1

1

This �gure was for a large tag set, and thus it would probably be higher for our smaller

tag set. Correcting for this would make our heuristic argument even stronger.

12

Next, consider a common tag-context model: P (t

i

j t

1;i�1

) � P (t

i

j t

i�1

).

Our version of this model gives a cross entropy of about 2.75 bits/tag and

when combined with our word model achieves a tagging accuracy of 95.9%.

Suppose, just for the sake of argument, that tagging accuracy is linear in

cross-entropy improvement. (There is no justi�cation for this assumption

| it simply gives us some way of estimating what should happen as we

change cross entropy.) With this assumption we see that we should expect

an increased tagging accuracy of about 5.1% per bit (95.9 - 91.5)/(3.61 -

2.75). But, as noted earlier, our grammar is only .07 bits better than our

single tagger. Thus we would expect it to perform .36% (5:1 � :07) better than

the single tagger. In fact, we saw about a .2% improvement but judged this

unimportant.

We can carry this argument one step further. We remarked in passing

that we had constructed an arti�cial corpus from our grammar and measured

the per-tag cross entropy for both the grammar and the single tagger on it.

As we noted, the grammar was .15 bits/tag better than the tagger. Thus,

according to the linear improvement model, we would expect that this gram-

mar would perform about .77% better than the tagger. That is, we would get

a tagging accuracy of 96.7% rather than 95.9%. This is not a great increase,

especially since we assume here a perfect grammar | the actual grammar

that generated the corpus. In real life we never get anything this good. Thus

this suggests that generally parsers will not do much better than taggers at

assigning tags to the words.

Of course, this argument is based upon the assumption that there is a

linear relation between accuracy and cross-entropy improvement, and thus

is heuristic only. However, we can test it. We took the arti�cial corpus and

assigned to each of its tags an actual word from the real corpus. For exam-

ple, the �rst noun in the arti�cial corpus was assigned the �rst word in the

real corpus that had a noun tag. (In the few cases where we needed more

words of a given tag, we just \wrapped around.") The results, as shown

in Figure 3, are very clear. The \all tagger" when applied to the arti�cial

corpus achieved a tagging accuracy of 96.8%, almost exactly what the linear

model predicted. However, note that this corpus seems to be about .2% eas-

ier to tag (the single tagger's accuracy went from 95.9% to 96.1%). Thus the

improvement over the single tagger was .7% compared to the linear model's

prediction of .8% (again, quite close). Figure 4 plots the tagging accuracy

of our several models as a function of the cross-entropy of the tag-context

13

Tagger Percent Percent % Tagged Tags Number

Sentences Words Words per Edges

Parsed Tagged Tagged Word per

(Parsed) Correctly Sentence

Single N/A 100% 96.1% 1.0 N/A

Tagger

Single Tagger 99.4% 99.2% 96.1% 1.0 1221

+ Parser

All Tagger 99.9% 99.7% 96.8% 2.16 5664

+ Parser

Figure 3: Taggers and their e�ect on the arti�cial corpus

2.5 2.75 3.0 3.25 3.5 3.75

91

92

93

94

95

96

97

�

�

�

�

Figure 4: Tagging accuracy as a function of the context-model's cross entropy

14

model they use. While the straight-line �t is pretty good, we do not regard

this as any con�rmation of our linearity assumption. However, we do regard

these results as con�rming our overall hypothesis: PCFG parsers do not ben-

e�t from multiple taggers because they cannot tag much better than single

taggers, and this is true because, when viewed as tagging context models,

PCFGs provide only the most modest improvement over single taggers. Fur-

thermore, this result applies not just to our grammar but to any grammar

based on the traditional restriction to a small number of non-terminals (21

in our case).

We make this point about non-terminals because, if one relaxes this as-

sumption and allows virtually unlimited numbers of non-terminals, then one

can begin to include lexical information in the non-terminal symbols. That

is, we get into the area of what we might call \probabilistic lexicalized gram-

mars" (PLGs). We believe PLGs to be a promising area of research, but this

is not the kind of PCFG parsers a tagger encounters today.

One �nal point. It could be argued that the inability of a parser to tag

better than a single tagger is not of interest because the goal of parsing is

producing a phrase marker and, as we have already noted, tagging accuracy

is not necessarily a good indicator of parsing accuracy. This argument is not

plausible. When we made the point about parsing vs. tagging accuracy, we

said that getting the tags right did not necessarily mean getting the phrase

marker right. But surely getting the tags wrong implies getting the phrase

marker wrong.

7 Conclusion

We have contrasted two approaches to taggers for parsers: single taggers and

multiple taggers. We suggest that, given a \normal" context free parsing

system, i.e., one with a comparatively small number of non-terminals (20,

say, not 2000), single taggers are preferable since the parser cannot do a

signi�cantly better job of tagging than current state-of-the-art single taggers.

Furthermore, since increasing tag ambiguity increases the amount of work

performed by the parser, there are good reasons not to pass on extra tags.

This is not the result we expected upon commencing this research, but from

the heuristic argument as to why this should be so and, in particular, from

the simulation results in Figure 3, these results seem general.

15

However, one should not read too much into this result. First, it does

not preclude further improvements in tagging. Work that looks for such

improvements from collecting �ner statistics based upon more lexical infor-

mation still seems promising (e.g., [16]). Second, our result certainly does

not imply that parsers are useless. One does not parse to get tags, one parses

to �nd phrase markers. We may have ruled out multiple taggers as a route

to improved parsing accuracy, but the need for parsers remains.

But this result does hint at another, quite interesting conclusion. Is there,

in fact, a limit on how well standard syntactic parsers can do in the face of

tag ambiguity? If a perfect grammar cannot get more than 96.8% of the

tags correct, how well can it do on the phrase markers? More study will be

required to make this more than a hint, but the question is an intriguing one.

References

1. Boggess, L., Agarwal, R. and Davis, R. Disambiguation of prepo-

sitional phrases in automatically labeled technical text. In Proceedings of

the Ninth National Conference on Arti�cial Intelligence. AAAI Press/MIT

Press, Menlo Park, 1991, 155{159.

2. Brill, E. A simple rule-based part of speech tagger. In Proceedings of

the Third Conference on Applied Natural Language Processing. 1992.

3. Brill, E. Some advances in transformation-based part of speech tag-

ging. In Proceedings of the Twelfth National Conference on Arti�cial In-

telligence. AAAI Press/MIT Press, Menlo Park, 1994, 722{727.

4. Charniak, E. Statistical Language Learning. MIT Press, Cambridge,

1993.

5. Charniak, E. and Carroll, G. Context-sensitive statistics for im-

proved grammatical language models. In Proceedings of the Twelfth Na-

tional Conference on Arti�cial Intelligence. AAAI Press/MIT Press, Menlo

Park, 1994.

6. Charniak, E., Carroll, G., Adcock, J., Cassandra, A., Gotoh,

Y., Katz, J., Littman, M. and McCann, J. Taggers for Parsers.

Department of Computer Science, Brown University, CS-94-06, 1994.

16

7. Charniak, E., Hendrickson, C., Jacobson, N. and Perkowitz,

M. Equations for part-of-speech tagging. In Proceedings of the Eleventh

National Conference on Arti�cial Intelligence. AAAI Press/MIT Press,

Menlo Park, 1993, 784{789.

8. Church, K. W. A stochastic parts program and noun phrase parser

for unrestricted text. In Second Conference on Applied Natural Language

Processing. ACL, 1988, 136{143.

9. DeRose, S. J. Grammatical category disambiguation by statistical op-

timization. Computational Linguistics 14 (1988), 31{39.

10. Francis, W. N. and Ku

�

cera, H. Frequency Analysis of English Us-

age: Lexicon and Grammar. Houghton Mi�in, Boston, 1982.

11. Jelinek, F. Markov source modeling of text generation. InThe Impact of

Processing Techniques on Communications, J. K. Skwirzinski, Ed. Nijho�,

Dordrecht, 1985.

12. Kupiec, J. and Maxwell, J. Training stochastic grammars from un-

labeled text corpora. In Workshop Notes, Statistically-Based NLP Tech-

niques. AAAI, 1992, 14{19.

13. deMarcken, C. G. Parsing the LOB corpus. In Proceedings of the 1990

Conference of the Association for Computational Linguistics. 1990, 243{

251.

14. Marcus, M. P., Santorini, B. and Marcinkiewicz, M. A. Build-

ing a large annotated corpus of English: the Penn treebank. Computational

Linguistics 19 (1993), 313{330.

15. Weischedel, R., Meteer, M., Schwartz, R., Ramshaw, L. and

Palmucci, J. Coping with ambiguity and unknown words through prob-

abilistic models. Computational Linguistics 19 (1993), 359{382.

16. Zernik, U. Shipping departments vs. shipping pacemakers: using the-

matic analysis to improve tagging accuracy. In Proceedings of the Tenth

National Conference on Arti�cial Intelligence. 1992, 335{342.

17

