Capability-based Agent Matchmaking*

Anthony Cassandra, Damith Chandrasekara and Marian Nodine
Microelectronics and Computer Technology Corporation (MCC)
Austin, TX 78759

{arc, damith, nodine}@mcc.com

Abstract

In an agent-based system, where different agents
form dynamic associations for the purposes of col-
laborative processing, there is a basic need for
agents to be able to describe themselves to other
agents. This allows agents to locate other agents
that can provide them with needed capabilities
to accomplish specific tasks at a given time. An
agent may describe itself in terms of its interfaces,
the services it can provide, the tasks it can ac-
complish, the data it can provide, etc. Practical,
implemented systems that perform some of this
functionality include those based on CORBA and
other distributed object services, but their repre-
sentation is too limited to function effectively in
an agent system with many agents that serve sim-
ilar functions. At the other end of the spectrum
are research systems that allow an agent to spec-
ify its capabilities in terms of reasonably complete
formal logic specifications; however these descrip-
tions have the potential to be very unwieldy and
error-prone and may require too much computa-
tion for it to be practical in a large, diverse agent
system.

In this paper we present an approach to agent ca-
pability description and capability matching that
is expressive enough to capture complicated agent
functionality, yet simple enough to be scalable to
large and diverse agent systems. This approach
relies on shared, focused ontologies that provide
a common vocabulary for describing information
and services. An agent can then advertise it-
self in terms of the focused ontologies, and query
about other agents using these same ontologies.
We show by example how specific, implemented
agents describe their capabilities in a way that
distinguishes them from other agents. We con-
trast our approach to the existing ones and point
out where it is superior.

Introduction

Our experiences with the InfoSleuth! (Bayardo et al.
1997; Nodine & Unruh 1997; Nodine, Fowler, & Perry

*Also appears as MCC Technical Report SRI-072-99.
nfoSleuth™ is a trademark of Microelectronics and
Computer Technology Corporation.

1999) agent system led to the discovery of many weak-
nesses in existing matchmaking systems. The InfoS-
leuth project began matching mostly over data and
agent types, with limited use of the capabilities of the
underlying reasoning engine. As the basic framework of
the system matured, new agent types were developed,
and the need for more complete reasoning over the ca-
pabilities of agents became more apparent.

In examining other systems that were either agent-
based or used service matchmaking, we found no real
system that was suitable for describing capabilities in
enough detail, while being abstract enough that the ac-
tual capabilities themselves were not bogged down by
being unnecessarily descriptive.

For example, distributed object systems such as
CORBA (OMG & X/Open 1992) provide the ability to
describe services in terms of interfaces, effectively re-
ducing the semantic expressiveness of the capability de-
scriptions to a series of method call signatures. This
was inadequate for some InfoSleuth applications be-
cause we could come up with many instances where two
or more agents presented the same interface, but each
agent did something different when the interface was
“called”. Also, systems such as CORBA grew out of the
distributed object world, thus its use in an agent-based
system will restrict the agents’ interactions to remote
procedure calls. Interactions between agents often take
a more complex form encompassing a series of method
exchanges.

Within the agent community, agent communication
languages such as KQML (Labrou 1996) attempt to de-
fine how an agent advertisement should look. For ex-
ample, KQML defines an advertise performative that al-
lows an agent to advertise its capabilities in terms of
the KQML performatives it is able to accept. Thus, an
advertise performative has (one or more) nested per-
formative(s) that define, in effect, the agent’s message
interface. One unfortunate problem with this approach
is that, given that agent interactions do take a more
complex form that encompasses a series of method ex-
changes (conversations), an agent usually does not want
to advertise incoming messages that are interpreted in
the context of already ongoing conversations. A second,
more fundamental problem is that this approach also



reduces the ability to describe agent semantics to the
ability to describe the interface to that agent, and thus
has the same interface-based issues that were present in
the distributed object systems.

These matchmaking issues have been discussed and
worked on within the context of several agent systems.
Of these systems, perhaps the most thought-through
approach is that of the LARKS (Sycara et al. 1999)
matchmaker. This matchmaker uses descriptions of ser-
vices that are based on formal logic specification tech-
niques. This approach, while general, leads to overly
detailed advertisements. This calls into question how
well it will scale in increasingly diverse agent systems.

Our experience with the InfoSleuth system led us to
the conclusion that we needed to represent agent capa-
bilities at multiple levels, including;:

e The agent conversations that are used to communi-
cate about the service, in terms of a conversation
ontology,

e The interface to the service, in terms of a language
ontology,

e The semantics of what the service does, in terms of
a service ontology,

e The information a service operates over, in terms of
a domain ontology.

Note that this approach relies on the availability of mul-
tiple, focused ontologies that describe specific conversa-
tions, languages, services and domains. These ontolo-
gies codify different aspects of specific services into a set
of agreed-upon terms that can be shared among agents
(and users). In some sense, this is a generalization of
the original InfoSleuth approach, which reasoned over
focused domain ontologies. However, the methodology
for couching the ontologies and advertisements in the
form we describe in this paper is a significant step be-
yond the representation of information this way. Addi-
tionally, an important property of our framework is its
independence from the ontologies and concepts being
reasoned over, which allows for future extensions.

In this paper we present our framework for represent-
ing these non-trivial agent capabilities as well as how
to query over these capabilities. We also discuss how
this leads to a very general reasoning mechanism which
is simple both conceptually and computationally. We
begin by discussing our somewhat pragmatic view of
ontologies, which is followed by the description of our
new framework. We then present some example appli-
cations for which existing systems are inadequate and
show how they can be easily represented in our frame-
work. We conclude with discussion of related work.

Ontologies

For an agent-based system to be functional, it is not
enough to define a syntax of communication or even
a semantics of the types of conversations that occur
between agents. The information the agents exchange

ontology service
class subscription
slot computation in {direct, indirect}
slot adaptability in {dynamic, static}
slot response-type in {bulk, incremental}

class query
slot computation in {direct, indirect}
slot response-type in {bulk, first-solution}

class data-response
slot delivery in {inline, http}
slot language
in {tuple-format, xml-annotated}
slot annotations in {source-tagging, tracing}

Table 1: Simple service ontology example.

must also be semantically consistent. An ontology pro-
vides a convenient mechanism for agents to express and
exchange information about their knowledge and capa-
bilities. The ontology must have enough concepts and
give enough detail to allow the agents to provide useful
information, but it cannot provide too much semantic
detail, since this will quickly become overwhelming in
terms of the labor required to create the representations
and the computational resources required to communi-
cate and reason about the representations.

With the current state-of-the-art in knowledge repre-
sentation, it is infeasible to have a single ontology that
captures every concept any agent will ever need. In-
stead, we use many small, domain-specific ontologies
where any particular agent can state exactly which of
these ontologies it supports or even which subset of the
ontology it can support. Using these ontological pieces
we get the flexibility of applying our framework to any
domain, while keeping the complexity of the knowledge
representation task manageable.

For our purposes, an ontology consists of an ontol-
ogy name and contains a set of classes and their slots.
Each class has a name and classes can be arranged hier-
archically using class-subclass relationships. Each slot
within a class has a name and a type and can also define
the set of possible values allowed for the slot.

As an example, Table 1 shows a simple ontology of
agent services which contains three classes and no sub-
class relationships. The subscription class has slots that
define characteristics of an agent which supports sub-
scriptions. The first slot, computation, specifies whether
the data that is being subscribed to comes directly from
that agent or if it is obtained through another agent; the
set of possible values for that slot are direct or indirect.
Similarly, the query and data-response classes have slots
which define sets of possible values and which represent
qualities of an agent’s query capabilities and character-
istics of its responses.



ontology service
class subscription
slot computation in {direct}
slot adaptability
slot response-type in {incremental}

Table 2: Ontology fragment example.

Ontology Fragments

Although an ontology will contain all the concepts for
a particular domain, no agent is required to support
the entire domain and often agents will only support
or understand some subset of the ontology. Subsets of
ontologies that are specific to an agent we term ontology
fragments.

Like a full ontology definition, an ontology fragment
consists of the ontology name and contains a set of
classes where each class can contain a set of slots. The
semantic interpretation of the combination of classes
within a fragment and slots within a class will depend
on the specific context where the fragment is used (in
a query, or in an advertisement), and is discussed in
subsequent sections.

The set of possible values that can be specified in
the ontology definition serve to define the domain of
possible values. Agents are able to further constrain?
a slot’s possible values by including constraints on the
slots in an ontology fragment. Table 2 shows an on-
tology fragment for an agent which can only support
subscriptions, gets its data directly and provides only
incremental results. Note that the slot adaptability is
unconstrained, which means it supports all the possible
values for that slot.

Framework

The basic requirement that led to the framework out-
lined in this paper was the need to perform matchmak-
ing over a richer set of agent capabilities. Our frame-
work provides a mechanism for agents to advertise their
abilities and characteristics to a matchmaking agent as
well as providing mechanisms to query the matchmaker
for sets of agents meeting specific criteria.

Agent Capability

Our framework is built around the concept of an agent’s
capability. Although individual domain-specific ontolo-
gies are advantageous for simplifying the representation
problem, these concepts from separate domains inter-
act, and it is important to capture these interactions to
properly describe an agent’s capability. For example,
consider an agent that offers subscriptions over con-
cepts from a particular information domain ontology.
An agent would like to describe its capabilities not only

2 Although we will only present constraints on elements of
a set in this paper, more general constraints are supported,
e.g., numeric intervals.

capability example-capability
ontology service
class subscription
slot computation in {direct}
slot adaptability
slot response-type in {incremental}
ontology environment
class site
slot state in {Texas}
slot contaminant
slot remedial-response
slot report
ontology conversation
class conversation
slot language in {kqml}

Table 3: An example of an agent capability.

in terms of the concepts it can handle in the informa-
tion domain, but also in the form of the types of sub-
scriptions it can handle. In this example, we could put
all the subscription concepts into the information do-
main ontology, but this would not help another agent
that wants to do something similar, but which uses a
different information domain. Our solution keeps the
subscription concepts in a separate ontology and al-
lows other ontologies to be combined with it. Thus,
in this case, the capability of the agent would be the
conjunction of a fragment of the service ontology and a
fragment of an information domain ontology.

The generalization of this is to allow an agent to de-
scribe itself using a conjunction of any number of sep-
arate ontology fragments. This is our precise definition
of an agent capability. We recognize that, although we
have generally defined the inter-ontology relationships
to be conjunctive, there is usually a deeper semantic re-
lationship between the ontologies. Furthermore, differ-
ent advertised ontology combinations can have differing
semantics for how the various ontologies are related. We
have chosen not to explicitly represent this relationship,
since this would add a significant amount of complexity
to the entire framework. As with the concepts in the
ontologies themselves, we assume these deeper seman-
tics are understood by the agents that use them.

Table 3 shows an example of an agent capability con-
sisting of three ontology fragments3. The service ontol-
ogy fragment defines the characteristics of subscriptions
the agent can handle. The environment fragment defines
the available environmental information, while the con-
versation fragment defines the conversational support of
the agent.

Note that our decomposition of capabilities into in-
dividual ontology fragments is a very general structure
which can provide us with a uniform view of informa-

3This example is derived from the ontologies used in the
EDEN Project (Fowler et al. 1999).



tion and services. This makes the representation and
reasoning over the representation extremely general.

Agent Advertisement

We have defined an agent’s capability as a conjunc-
tion of ontology fragments and have defined an ontology
fragment as the subset of the ontology supported by the
agent. An agent advertisement is what an agent uses
to declare its abilities to a matchmaking agent and it
consists of one or more agent capabilities. When more
than one agent capability is advertised, the semantic
interpretation is similar to a disjunction: the agent is
capable of any one of the advertised capabilities, and
each capability is considered independently.

Within the ontology fragments of a capability will
appear one or more classes from the ontology. The se-
mantic interpretation is that the agent supports any
subset of those advertised classes. An advertised class
can contain one or more advertised slots which is inter-
preted semantically as the agent supporting any subset
of these slots. Finally, there can be constraints on an
advertised slot, where the interpretation is a disjunction
or union of all the constraints. The slot is considered
to be unconstrained when there are no advertised con-
straints.

Queries and Reasoning

The ability for an agent to advertise its capabilities is
only useful if there are agents that are interested in
asking questions about other agents’ capabilities and
a reasoning component that can match queries to ad-
vertisements. A query is structurally very similar to a
capability that exists in an advertisement. A query is
a conjunction of ontology fragments, where each frag-
ment can specify one or more classes, slots from each
class and constraints on the slots. However, since this
appears in the context of asking a question, it will have
slightly different semantics in the reasoning engine.

Matching Queries with Advertisements At the
top-most level, the set of ontology fragments in a query
is interpreted as a conjunction. An advertised capa-
bility matches this query if it has advertised at least
all those ontology fragments and each of the individ-
ual queried fragments match the advertised fragments,
where the matching criteria is discussed below. Note
that the advertisement can contain other ontology frag-
ments that do not appear in the query, but all the ones
that do appear in the query must have a matching frag-
ment in a particular advertised capability.

Matching Ontology Fragments First, and most
obviously, the names of the ontologies these fragments
are associated with must be the same. Next, the adver-
tised classes must match the queried classes, but here
the query has the option of specifying the set of classes
as either a conjunction or a disjunction. For a conjunc-
tion of queried classes, the advertised ontology fragment

must contain at least all of the queried classes and the
classes must match (the matching criteria is defined be-
low). Note that the advertised ontology fragment may
have more classes than are queried. For a disjunction
of classes, it is enough for any one of the queried classes
to match one of the advertised classes.

Matching Ontology Classes A queried class can
contain one or more queried slots. As with classes
within an ontology fragment, a queried class has the op-
tion of querying on a conjunction or disjunction of slots.
A conjunction will mean that the advertised class must
support and match at least all those queried slots. A
disjunction means that at least one of the queried slots
must match in the advertised class.

With the ontology fragments, the first criteria for
matching required the ontologies to have the same
name. However, for the matching between classes, the
queried class name and the advertised class name may
be different. The reason for this is that the ontologies
are actually a hierarchy of class-subclass relationships.
Thus, if class radioactive-site is a subclass of site then
agents that support class radioactive-site might be useful
for an agent that asks about information from class site.
Thus, the reasoning algorithm that matches queries to
advertisements reasons over the ontology class hierar-
chy.

In a queried capability, every class specified has a
taxonomic inference depth which is used by the reason-
ing engine to help determine which advertised classes
match the queried class. The inferencing is always from
the queried class to its subclasses, since matching on
super-classes could result in agents whose data does not
answer the query being asked. The inference depth rep-
resents the maximum number of class-subclass relation-
ships to traverse while checking if an advertised class is
a subclass of the queried class. A depth of 0 (zero)
means that the advertised class name must be identical
to the queried class name. An infinite depth means that
there is no limit, while all other values represent some
finite limit.

Matching Ontology Slots For a slot to match it
must have the same name and there must be a non-
empty intersection between the queried constraints and
the advertised constraints. Both the advertised and
queried constraints represent a subset of all the pos-
sible values a slot can have, so a slot that matches with
a non-empty intersection semantically means that it is
possible that it will have relevant information or ser-
vices.

Retrieving Information from a Query While be-
ing able to match advertisements is a necessary func-
tion, there is more to the matching than simply saying
“match” or “no match”. The agent that asks the query
will likely need to have more information about the
matching process. For example, an agent that queries
for all matches to an ontology fragment with any one



of three classes might need to know exactly which of
the three classes were present in the matched adver-
tisement.

One possible solution to making sure an agent gets
all the information about the match is to simply return
all the matching advertisement capabilities. While this
is the cleanest solution conceptually, in a real agent sys-
tem this tends to pose problems. One problem concerns
the volume of information that has to be exchanged as
the result of a query. Also, if the querying agent actu-
ally needs information about the matching process, by
returning the whole advertisement the querying agent
will be required to duplicate many of the reasoning
steps. As a consequence, our framework has allowed
parts of the queries to be annotated with attributes
that explicitly define the type and amount of informa-
tion to return in a query result. Space has precluded
us from presenting these details in the paper, but the
exact form of these attributes is not as crucial as rec-
ognizing the need for returning information about the
matching process and controlling its size.

Application and Example

Now that we have presented the basic framework for our
matchmaking system, we present an example of how it
is used within the context of a simplistic, but real appli-
cation. We note that this example shows one of a myr-
iad of matchmaking decisions that have been made all
along in the InfoSleuth system, but it illustrates some
of the salient concepts that have made matchmaking so
difficult all along.

Advertising In this application, we begin with an
example of a resource agent named tx-env-resource that
provides environmental contamination information re-
lated to contaminated sites in Texas. The example ad-
vertisement is shown in Table 4.

This agent advertises some generic capabilities — the
ability to be monitored, the ability to answer pings —
available in all agents. These are named the monitor-
subscribe-capability and the ping-capability, respectively.
Next, the agent advertises two capabilities related to
how its own information can be accessed — one related to
subscriptions (the env-subscription-capability) and one
related to queries (the env-query-capability). This ad-
vertisement is interpreted to mean that the agent tx-
env-resource has several capabilities, any one of which
can match a given query.

Only the env-subscription-capability is described en-
tirely in Table 4. This capability consists of a set of
related ontology fragments. The fragment of the con-
versation ontology specifies that the agent accepts con-
versations of the form used by subscriptions, using the
language KQML. The fragment of the sql ontology spec-
ifies that the query should be specified in SQL syntax.
The fragment of the environment ontology specifies the
classes and slots that have data in the agent. The frag-
ment of the service ontology specifies that the service

advertisement
capability monitor-subscribe-capability

capability ping-capability

capability env-subscription-capability
ontology conversation
class conversation
slot conversation-type in {subscribe}
slot language in {kqml}
ontology sql

ontology environment
class site
slot contaminant
slot remedial-response
slot city
slot state in {Texas}
class contaminant

class remedial-response

ontology services
class data-response
slot language in {tuple-format}
slot delivery in {http, inline}
slot annotations in {source-tagging}
class subscription
slot computation in {direct}
capability env-query-capability

Table 4: Advertisement for the resource agent tx-env-
resource.

is direct (accessed locally within the agent), as well as
other service properties.

Now, assume that we have a large collection of en-
vironmental resources, all of which contain related in-
formation concerning contaminants and sites in various
locations throughout the world. Each resource has its
own resource agent, maintained locally, that makes the
information available in the form of the environment on-
tology. Users may wish to access a combined view of the
information using the subscription paradigm. There-
fore, we can add to the agent system one or more agents
that takes the same kind of subscription request and
subscribes in turn to several resources, merging their
results into a unified view of the information. Its ad-
vertisement would be as shown in Table 5.

This agent advertises the same generic capabilities,
monitor-subscribe-capability and the ping-capability, that
the resource agent advertised. The first additional ca-
pability, the subscription-capability, states that it can
respond to subscribe conversations in KQML where the
information to be subscribed to is specified as any SQL
query over any other ontology, and the response is de-



advertisement
capability monitor-subscribe-capability

capability ping-capability

capability subscription-capability
ontology conversation
class conversation
slot conversation-type in {subscribe}
slot language in {kqml}
ontology sql

ontology services
class data-response
slot language in {tuple-format}
slot delivery in {http, inline}
class subscription
slot computation in {indirect}
slot adaptability in {dynamic}
ontology data-independent

Table 5: Advertisement for the subscription agent my-
subagent.

livered either inline in the KQML message or off-line us-
ing http. The indirect specification in the services indi-
cates that the actual information is retrieved from other
agents, and the dynamic adaptability indicates that its
answers can take into account new information from
new resource agents. The last ontology fragment, data-
independent, captures the concept that this agent’s ser-
vices are not dependent on any particular data domain
ontology; i.e., it is a general subscription agent that can
provide subscriptions over any data domain.

Querying Within the context of an agent system, vi-
sualize a user agent that supports the users in inserting
subscriptions into the agent system and processing the
results. Suppose that the user presents a subscription
request:

SELECT contaminant
FROM site
WHERE site is in Austin, TX.

The user agent begins by looking for some agent that
can do subscriptions, and can process the request. The
query it presents to the matchmaker is shown in Table 6.
This query will match to the resource agent tx-env-
resource, but not to the subscription agent my-subagent.
It also will match to any other direct information re-
source agent that has some compatible capability ad-
vertised, so the agent that sent the query may receive
a list of multiple agents in response to its query.
Suppose that, in the case where multiple resources
are available to answer the query, there are more match-
ing agents that the user agent wants to deal with. The

query
capability subscribe-to-capability
ontology conversation
class conversation
slot conversation-type in {subscribe}
slot language in {kqml}
ontology sql

ontology environment
class site
slot contaminant
slot city in {Austin}
slot state in {Texas}
ontology services
class data-response
slot language in {tuple-format}
slot delivery in {inline}
class subscription
slot computation in {direct}

Table 6: Query that looks for agents that have infor-
mation about new contaminants at sites in Austin, TX
as they are reported.

user agent then decides to use a general subscription
agent to return an amalgam of information from multi-
ple resources as a single subscription; it is looking for a
data independent subscription resource that will collect
and merge the requested information. In this case, the
query is nearly the same, except the computation mode
is indirect and the environment ontology is replaced with
the data-independent ontology. With this new query, the
matchmaker would match the request to my-subagent.
When the agent my-subagent receives the subscription
request, it in turn asks the matchmaker for all direct
suppliers of the requested information, using the same
subscription mechanism. It subscribes to all agents that
are returned from the matchmaker, assembling the re-
sults together into a single result stream. When new
resources come online that have relevant information,
my-subagent subscribes to those agents as well, merg-
ing their results into the same result stream.

Discussion This is an example of one of many real
problems we have encountered trying to do match-
making among agents in real, large-scale applications.
Other issues that have motivated us towards this
capability-based approach for advertising and querying
include:

e The need to provide a finer level of resolution on the
aspects of standard query languages that a particular
agent actually supports.

e The need to specify detailed aspects of fairly complex,
data analysis services.

e The need to describe the interface to an agent at mul-
tiple levels — one at the level of the agent communi-



cation language and one at the level of the content
language.

e The need for agents to advertise long-term tasks
such as data analysis and document extraction tasks,
thereby providing the information necessary to mul-
tiplex similar requests into single processing tasks.

e The need for individual agents to provide different
classes of people various types of access to the agents’
information and services through the use of different
ontologies over the same domain.

Related Work

Syntactic matchmaking uses the structure or format
of a task specification to match a requester with a
service provider. Approaches to syntactic matchmak-
ing include interface-based matchmaking and syntactic
unification. This type of matchmaking involves using
mainly syntactic properties such as object or method
interfaces or query/scripting languages to decide which
service providers to recommend. The weakness of syn-
tactic matching is that it relies on the assumption that
the scope and operation of a given service can be ade-
quately described in terms of the interface to that ser-
vice - an assumption that does not always hold within
complex, diverse agent-based systems.

Interface-based matchmaking has been used exten-
sively is within distributed object systems such as those
based on CORBA (OMG & X/Open 1992; OMG 1997).
CORBA uses a common interface description language
called 1DL. When a CORBA object makes a call to an-
other object, it determines the signature of the method
being invoked, and places a request to the ORB to locate
an object with that signature. The ORB looks through
its list of interface descriptions and matches the signa-
ture to some method in some object’s IDL description,
and returns the matched object. The requesting object
can then invoke the method on the matched object.

Different agent communication languages (Labrou
1996; FIPA 1997) have developed special messages to
send to a facilitator agent such as a matchmaker.
KQML defines advertise, broker and recommend mes-
sages, which allow an agent to advertise its services, and
ask about other agents’ services. In these messages, the
service is described in terms of a second KQML message,
possibly with wild cards. A match between a request
and an agent takes place when the agent’s advertise-
ment unifies with the broker or recruit performative.
Again, this implements a syntactic match, as the pri-
mary concern is matching the structure of the agent’s
interface.

Some agent systems have pushed their matchmak-
ing capabilities beyond those of syntactic matchmak-
ing. For example, several information retrieval sys-
tems reason over the content of different information
sources. These systems include siMs (Arens, Knoblock,
& Shen 1996), TsiMmIs (Molina et al. 1997), Info-
Master (Genessereth, Keller, & Duschka 1997) and In-
formation Manifold (Levy, Srivastava, & Kirk 1995;

Levy, Rajaraman, & Ordille 1996). These systems
define a common ontology for describing the objects
in their information domain. Individual information
sources that contain these objects then describe con-
straints on the objects that they can provide, in terms
of this common vocabulary. The matchmaker then uses
these constraints to determine how to process queries
from users that involve one or more of these resources.
The matchmaking capabilities of these systems do not
extend beyond the use of information content.

The SHADE project (McGuire et al. 1993; Kuokka &
Harada 1995) represents services using KIF, a knowledge
interchange method that employs first-order logic ex-
pressions. Queries concerning agents are matched using
unification. Additionally, SHADE provides some facility
to match over constraints on the values of the data, sim-
ilar to the early matchmaking in the InfoSleuth system.
Since SHADE relies on a shared ontology to represent
data, Kuokka and Harada also propose a companion
matchmaker named COINS that uses TF/IDF filtering to
match document characteristics to free text (Kuokka &
Harada 1996). In this paper, we do not address the use
of such filtering, because using filtering for matchmak-
ing is orthogonal to our use of ontologies.

The LARKS matchmaking system (Sycara et al
1999) was developed within the context of the
RETSINA (Decker & Sycara 1997) project. RETSINA
matchmakers describe the semantics of their offered ser-
vices both in terms of signatures (inputs and outputs),
but also in terms of the relationships between the in-
puts and the outputs. They also use TF/IDF techniques
to categorize the semantic relevance of a query to an
advertisement. LARKS implements a multilevel match-
maker that reasons over both.

In some sense, LARKS representation and reasoning
provides too much generality, since it is based on a first-
order logic. This can present a formidable knowledge
representation task. Also, reasoning over this represen-
tation may require significant computational resources.
However, because of its generality, one could essentially
represent our framework in a first-order logic by defin-
ing the appropriate predicates for the various pieces of
our ontologies. The LARKS reasoning engine could then
reason over these higher-level concepts in a similar man-
ner to the one we use in our own reasoning engine.

The InfoSleuth project (Bayardo et al. 1997; Nodine
& Unruh 1997; Nodine, Fowler, & Perry 1999) also did
some early work on matching (Nodine, Bohrer, & Ngu
1999). The limitations that we encountered in this ini-
tial implementation of matchmaking served as a moti-
vation for the development of the approach presented
in this paper.

Conclusions

This paper has presented a novel framework for agents
to advertise their capabilities and to query and reason
over these capabilities. We have shown that represent-
ing non-trivial agent capabilities in other agent-based



or distributed object-based frameworks is either impos-
sible or impractical.

In response, we have developed a new framework that
relies on the use of focused ontologies and constraints
over those ontologies in describing requested or pro-
vided agent capabilities. This framework presents a
relatively uniform view of advertisements, queries and
query results. This uniformity greatly reduces the com-
plexity of the matchmaking reasoning mechanism.

We have a developed a prototype implementation of
this framework using InfoSleuth agents. This proto-
type has shown that the addition of more expressive
advertisements, queries and reasoning enables a wide
range of enhancements. This increases the functionality
and efliciency of the system dramatically. In particular,
the query processing aspects of the system have been
greatly improved since the query can be more specific
and focused. This has greatly reduced the amount of
extra reasoning that is required in the query process-
ing agents as well as eliminating a significant amount
of extraneous work.

Finally, we note that while our focus is on having a
matchmaker agent that performs this reasoning (match-
ing a query against a repository of agent advertise-
ments) there are other situations where general reason-
ing is needed. For instance, there could be a blackboard
system where queries are posted and advertisements are
matched to a repository of queries.

Acknowledgments We thank all of the members of
MCC’s InfoSleuth group for the many discussions and
experiences they have shared over the years. Parts of
this paper must surely contain an amalgam of the their
thoughts and ideas.

References

Arens, Y.; Knoblock, C.; and Shen, W. 1996. Query
reformulation for dynamic information integration.
Journal of Intelligent Information Systems 6(2):99-
130.

Bayardo, R.; Bohrer, W.; Brice, R.; Cichocki, A.;
Fowler, J.; Helal, A.; Kashyap, V.; Ksiezyk, T.; Mar-
tin, G.; Nodine, M.; Rashid, M.; Rusinkiewicz, M.;
Shea, R.; Unnikrishnan, C.; Unruh, A.; and Woelk,
D. 1997. InfoSleuth: An agent-based semantic inte-
gration of information in open and dynamic environ-
ments. Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data.

Decker, K., and Sycara, K. 1997. Intelligent adaptive
information agents. Journal of Intelligent Information
Systems 9(3):239-260.

FIPA. 1997. http://www.fipa.org.

Fowler, J.; Nodine, M.; Perry, B.; and Bargmeyer, B.

1999. Agent-based semantic interoperability in InfoS-
leuth. Sigmod Record 28(1).

Genessereth, M.; Keller, A.; and Duschka, O. 1997.

Infomaster: An information integration system. In

Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, 539-542.

Kuokka, D., and Harada, L. 1995. On using KQML
for matchmaking. In Proceedings of the International
Conference in Multi-agent Systems (ICMAS), 239-
254.

Kuokka, D., and Harada, L. 1996. Integrating infor-
mation via matchmaking. Journal of Intelligent Infor-
mation Systems 6(2):261-279.

Labrou, Y. 1996. Semantics for an Agent Commu-
nication Language. Ph.D. Dissertation, University of
Maryland at Baltimore County.

Levy, A. Y.; Rajaraman, A.; and Ordille, J. J.
1996. Querying heterogeneous information sources us-
ing source descriptions. In Proceedings of the Interna-
tional Conference on Very Large Databases, 251-262.

Levy, A.; Srivastava, D.; and Kirk, T. 1995. Data
model and query evaluation in global information sys-
tems. Journal of Intelligent Information Systems 5(2).

McGuire; Kuokka; Weber; Tenenbaum; Gruber; and
Olsen. 1993. SHADE: Technology for knowledge-based
collaborative engineering. Journal of Concurrent En-
gineering: Research and Applications 1(3).

Molina, G.; Papakonstantinou, Y.; Quass, D.; Rajar-
man, A.; Sagiv, Y.; Ullman, J.; and Widom, J. 1997.
The TSIMMIS approach to mediation: Data models
and languages. Journal of Intelligent Information Sys-
tems 8(2):117-132.

Nodine, M. H., and Unruh, A. 1997. Facilitating
open communication in agent systems: the InfoSleuth
infrastructure. In Proceedings of the Fourth Inter-
national Workshop on Agent Theories, Architectures,
and Languages.

Nodine, M.; Bohrer, W.; and Ngu, A. H. H. 1999.
Semantic multibrokering over dynamic heterogeneous
data sources in InfoSleuth. In Proceedings of the In-
ternational Conference on Data Engineering.

Nodine, M.; Fowler, J.; and Perry, B. 1999. Active
information gathering in InfoSleuth. In Proceedings of
the International Symposium on Cooperative Database
Systems for Advanced Applications.

OMG, and X/Open. 1992. The Common Object Re-
quest Broker: Architecture and Specification, Revision
1.1. John Wiley and Sons.

OMG. 1997. OMG trading object service specifica-
tion. Technical Report 97-12-02, Object Management
Group, http://www.omg.org/cobra.

Sycara, K.; Lu, J.; Klusch, M.; and Widoff, S. 1999.
Matchmaking among heterogeneous agents on the In-
ternet. In Proceedings of the AAAI Spring Symposium
on Intelligent Agents in Cyberspace.



