Acting Optimally in Partially Observable Stochastic Domains

Anthony R. Cassandra*, Leslie Pack Kaelbling’ and Michael L. Littman?*
Department of Computer Science
Brown University
Providence, RI 02912
{arc,1lpk,mll}@cs.brown.edu

Abstract

In this paper, we describe the partially observable
Markov decision process (POMDP) approach to finding
optimal or near-optimal control strategies for partially
observable stochastic environments, given a complete
model of the environment. The POMDP approach was
originally developed in the operations research com-
munity and provides a formal basis for planning prob-
lems that have been of interest to the AT community.
We found the existing algorithms for computing op-
timal control strategies to be highly computationally
inefficient and have developed a new algorithm that is
empirically more efficient. We sketch this algorithm
and present preliminary results on several small prob-
lems that illustrate important properties of the POMDP
approach.

Introduction

Agents that act in real environments, whether physical
or virtual, rarely have complete information about the
state of the environment in which they are working. It
is necessary for them to choose their actions in partial
ignorance and often it 1s helpful for them to take ex-
plicit steps to gain information to achieve their goals
most efficiently.

This problem has been addressed in the artificial in-
telligence (AT) community using formalisms of epis-
temic logic and by incorporating knowledge precon-
ditions and effects into their planners (Moore 1985).
These solutions are applicable to fairly high-level prob-
lems in which the environment is assumed to be com-
pletely deterministic, an assumption that often fails in
low-level control problems.

Domains in which actions have probabilistic results
and the agent has direct access to the state of the
environment can be formalized as Markov decision

*Anthony Cassandra’s work was supported in part by
National Science Foundation Award TRI-9257592.

TTLeslie Kaelbling’s work was supported in part by a
National Science Foundation National Young Investigator
Award TRI-9257592 and in part by ONR Contract N00014-
91-4052, ARPA Order 8225.

{Michael Littman’s work was supported by Bellcore.

processes (MDPs) (Howard 1960). An important as-
pect of the MDP model i1s that it provides the ba-
sis for algorithms that provably find optimal poli-
cies (mappings from environmental states to actions)
given a stochastic model of the environment and a
goal. MDP models play an important role in current
AT research on planning (Dean et al. 1993; Sutton
1990) and learning (Barto, Bradtke, & Singh 1991;
Watkins & Dayan 1992), but the assumption of com-
plete observability provides a significant obstacle to
their application to real-world problems.

This paper explores an extension of the MDP model
to partially observable Markov decision processes
(poMDPs) (Monahan 1982; Lovejoy 1991), which, like
MDPs, were developed within the context of operations
research. The POMDP model provides an elegant so-
lution to the problem of acting in partially observable
domains, treating actions that affect the environment
and actions that only affect the agent’s state of in-
formation uniformly. We begin by explaining the ba-
sic POMDP formalism; next we present an algorithm
for finding arbitrarily good approximations to optimal
policies and a method for the compact representation
of many such policies; finally, we conclude with exam-
ples that illustrate generalization in the policy repre-
sentation and taking action to gain information.

Partially Observable Markov Decision
Processes

Markov Decision Processes An MDP is defined by
the tuple (S, A, T, R), where § is a finite set of envi-
ronmental states that can be reliably identified by the
agent; A is a finite set of actions; T is a state transition
model of the environment, which is a function mapping
elements of § x A into discrete probability distributions
over §; and R is a reward function mapping S x A to
the real numbers that specify the instantaneous reward
that the agent derives from taking an action in a state.
We write T'(s,a,s’) for the probability that the envi-
ronment will make a transition from state s to state s’
when action a is taken and we write R(s, a) for the im-
mediate reward to the agent for taking action a in state
s. A policy, m, is a mapping from S to A, specifying

SE 7T >

:

Figure 1: Controller for a POMDP

an action to be taken in each situation.

Adding Partial Observability When the state is
not completely observable, we must add a model of
observation. This includes a finite set, O, of possible
observations and an observation function, O, mapping
A x § into discrete probability distributions over O.
We write O(a, s, 0) for the probability of making ob-
servation o from state s after having taken action a.

One might simply take the set of observations to be
the set of states and treat a POMDP as if it were an MDP.
The problem is that the process would not necessarily
be Markov since there could be multiple states in the
environment that require different actions but appear
identical. As a result, even an optimal policy of this
form can have arbitrarily poor performance.

Instead, we introduce a kind of internal state for the
agent. A belief state is a discrete probability distribu-
tion over the set of environmental states, §, represent-
ing for each state the probability that the environment
is currently in that state. Let B be the set of belief
states. We write b(s) for the probability assigned to
state s when the agent’s belief state is b.

Now, we can decompose the problem of acting in a
partially observable environment as shown in Figure 1.
The component labeled “SE” is the state estimator. It
takes as input the last belief state, the most recent
action and the most recent observation, and returns
an updated belief state. The second component is the
policy, which now maps belief states into actions.

The state estimator can be constructed from 7" and
O by straightforward application of Bayes’ rule. The
output of the state estimator is a belief state, which
can be represented as a vector of probabilities, one for
each environmental state, that sums to 1. The com-
ponent corresponding to state s’, written SE,/ (b, a, 0),
can be determined from the previous belief state, b, the
previous action, a, and the current observation, o, as
follows:

SEs/(b,a,0) = Pr(s'|a,o,b)
_ Pr(o]s,a,b)Pr(s' | a,b)
N Pr(o| a,b)
O(a,s',0) >, cs T(s,a,s")b(s)
- Pr(o| a,b)

where Pr(o | a,b) is a normalizing factor defined as

Pr(o|a,b) = Z O(a,s',0) ZT(S, a, s)b(s) .

s'eS SES

3

s

Figure 2: A Simple POMDP environment

The resulting function will ensure that our current be-
lief accurately summarizes all available information.

Example A simple example of a POMDP is shown in
Figure 2. Tt has four states, one of which (state 2)
is designated as the goal state. An agent is in one
of the states at all times; it has two actions, left and
right, that move it one state in either direction. If it
moves into a wall, it stays in the state it was in. If the
agent reaches the goal state, no matter what action it
takes, it 1s moved with equal probability into state 0,
1, or 3 and receives reward 1. This problem is trivial if
the agent can observe what state it 1s in, but is more
difficult when it can only observe whether or not it is
currently at the goal state.

When the agent cannot observe its true state, it can
represent its belief of where it is with a probability
vector. For example, after leaving the goal, the agent
moves to one of the other states with equal probabil-
ity. This is represented by a belief state of (%, %, 0, %)
After taking action “right” and not observing the goal,
there are only two states from which the agent could
have moved: 0 and 3. Hence, the agent’s new belief
vector is (0, %,0,%). If it moves “right” once again
without seeing the goal, the agent can be sure it is
now in state 3 with belief state (0, 0,0, 1). Because the
actions are deterministic in this example, the agent’s
uncertainty shrinks on each step; in general, some ac-
tions in some situations will decrease the uncertainty
while others will increase it.

Constructing Optimal Policies

Constructing an optimal policy can be quite diffi-
cult. Even specifying a policy at every point in
the uncountable state space is challenging. One
simple method 1s to find the optimal state-action
value function, @&y, for the completely observ-
able MDP (S, A,T,R) (Watkins & Dayan 1992);
then, given belief state b as input, generate action
argmax,c 4 >, b(s)Q¢o(s, a). That is, act as if the un-
certainty will be present for one action step, but that
the environment will be completely observable there-
after. This approach, similar to one used by Chris-
man (Chrisman 1992), leads to policies that do not
take actions to gain information and will therefore be
suboptimal in many environments.

The key to finding truly optimal policies in the par-
tially observable case is to cast the problem as a com-
pletely observable continuous-space MDP. The state set
of this “belief MDP” is B and the action set is A. Given
a current belief state b and action a, there are only

|O| possible successor belief states b, so the new state
transition function, 7, can be defined as

(b, a,b’) = Z Pr(o|a,b) ,
{o€O|SE(b,a,0)=0b"}

where Pr(o | a,b) is defined above. If the new belief
state, ¥’, cannot be generated by the state estimator
from b, a, and some observation, then the probability
of that transition is 0. The reward function, p, is con-
structed from R by taking expectations according to
the belief state; that is,

p(b,a) = b(s)R(s,a) .

SES

At first, this may seem strange; it appears the agent is
rewarded simply for believing it is in good states. Be-
cause of the way the state estimation module is con-
structed, it is not possible for the agent to purposely
delude itself into believing that it is in a good state
when it is not.

The belief MDP is Markov (Astrom 1965), that is,
having information about previous belief states cannot
improve the choice of action. Most importantly, if an
agent adopts the optimal policy for the belief MDP,
the resulting behavior will be optimal for the partially
observable process. The remaining difficulty 1s that
belief space is continuous; the established algorithms
for finding optimal policies in MDPs work only in finite
state spaces. In the following sections, we discuss the
method of value iteration for finding optimal policies.

Value Iteration Value iteration (Howard 1960) was
developed for finding optimal policies for MDPs. Since
we have formulated the partially observable problem as
an MDP over belief states, we can find optimal policies
for POMDPs in an analogous manner.

The agent moves through the world according to its
policy, collecting reward. Although there are many
criterion possible for choosing one policy over another,
we here focus on policies that maximize the infinite
expected sum of discounted rewards from all states. In
such infinite horizon problems, we seek to maximize
E[r(0) + >52, v'r(t)], where 0 < v < 1 is a discount
factor and r(t) is the reward received at timet. If y is
zero, the agent seeks to maximize the reward for only
the next time step with no regard for future conse-
quences. As 7 increases, future rewards play a larger
role in the decision process.

The optimal value of any belief state b is the infinite
expected sum of discounted rewards starting in state b
and executing the optimal policy. The value function,
V*(b), can be expressed as a system of simultaneous
equations as follows:

* — / * 7/
V7(b) = max(p(h, a) + > rlba V) . (1)
beB
The value of a state is its instantaneous reward plus

the discounted value of the next state after taking the
action that maximizes this value.

One could also consider a policy that maximizes re-
ward over a finite number of time steps, t. The essence
of value iteration is that optimal ¢-horizon solutions ap-
proach the optimal infinite horizon solution as ¢ tends
toward infinity. More precisely, it can be shown that
the maximum difference between the value function of
the optimal infinite horizon policy, V*, and the analo-
gously defined value function for the optimal ¢-horizon
policy, V¥, goes to zero as ¢ goes to infinity.

This property leads the following value iteration al-
gorithm:

Let Vo(b) =0 for allb e B

Lett =0

Loop
t=t+1
Forallbe B

Vi(b) = maxaea[p(b, a)
+v 2 pren T(b @, b)Vi1 (0)]
Until |V4(b) — Vi—1(b)| < e for all b € B

This algorithm is guaranteed to converge in a finite
number of iterations and results in a policy that is
within 2y¢/(1—7) of the optimal policy (Bellman 1957;
Lovejoy 1991).

In finite state MDPs, value functions can be repre-
sented as tables. For this continuous space, however,
we need to make use of special properties of the be-
lief MDP to represent it finitely. First of all, any fi-
nite horizon value function is piecewise linear and con-
vex (Sondik 1971; Smallwood & Sondik 1973). Tn addi-
tion, for the infinite horizon, the value function can be
approximated arbitrarily closely by a convex piecewise-
linear function (Sondik 1971).

A representation that makes use of these properties
was introduced by Sondik (Sondik 1971). Tet V; be
a set of |S|-dimensional vectors of real numbers. The
optimal f-horizon value function can be written as:

Vi(b) =max b-a

for some set V;. Any piecewise-linear convex func-
tion can be expressed this way, but the particular
vectors in V; can also be viewed as the values as-
sociated with different choices in the optimal policy,
analogous to Watking’ Q-values (Watkins & Dayan
1992); see (Cassandra, Kaelbling, & TLittman 1994;
Sondik 1971).

The Witness Algorithm The task at each step in
the value iteration algorithm is to find the set V; that
represents V,* given V;_1. Detailed algorithms have
been developed for this problem (Smallwood & Sondik
1973; Monahan 1982; Cheng 1988) but are extremely
inefficient. We describe a new algorithm, inspired by
Cheng’s linear support algorithm (Cheng 1988), which
both in theory and in practice seems to be more effi-
cient than the others.

Many algorithms (Smallwood & Sondik 1973;

Cheng 1988) construct an approximate value function,

@(b) = max,cyp, b - a, which is successively improved

by adding vectors to V, C V;. The set V; is built up us-
ing a key insight. From V;_1 and any particular belief
state, b, we can determine the o € V; that should be
added to V; to make Vt(b) = Vi#(b). The algorithmic
challenge, then, is to find a b for which V;(b) # V;*(b)
or to prove that no such b exists (i.e., that the approx-
imation is perfect).

The Witness algorithm (Cassandra, Kaelbling, &
Littman 1994) defines a linear program that returns
a single point that is a “witness” to the fact that
v, # V. The process begins with an initial V, pop-
ulated by the vectors needed to represent the value
function at the corners of the belief space (i.e., the |S]
belief states consisting of all 0’s and a single 1). A lin-
ear program is constructed with |S| variables used to
represent the components of a belief state, b. Auxiliary
variables and constraints are used to define
v =V (b) = max[p(b,a) + 5 > r(b,a,b) nax a- b1

b'eB
and .

v = Vi(b) = maxa - b

&EVy
A final constraint insists that © # v and thus the pro-
gram either returns a witness or fails if V; = V. If
a witness is found, it is used to determine a new vec-
tor to include in V; and the process repeats. Only one

linear program is solved for each vector in V.

In the current formulation, a tolerance factor, 6,
must be defined for the linear program to be effec-
tive. Thus the algorithm can terminate even though
Vi # V, as long as the difference at any point is no
more than 6. This differentiates the Witness algorithm
from the other approaches mentioned, which find exact
solutions.

Although the Witness algorithm only constructs ap-
proximations, in conjunction with value iteration it can
construct policies arbitrarily close to optimal by mak-
ing § small enough. Unfortunately, extremely small
values of é result in numerically unstable linear pro-
grams that can be quite challenging for many linear
programming implementations.

It has been shown that finding the optimal policy
for a finite-horizon PoMDP is PSPACE-complete (Pa-
padimitriou & Tsitsiklis 1987), and indeed all of the al-
gorithms mentioned take time exponential in the prob-
lem size if the specific POMDP parameters require an
exponential number of vectors to represent V;*. The
main advantage of the Witness algorithm is that it
appears to be the only one of the algorithms whose
running time is guaranteed not to be exponential if
the number of vectors required is not. In practice, this
has resulted in vastly improved running times and the
ability to run much larger example problems than ex-
isting POMDP algorithms. Details of the algorithm are
outlined in a technical report (Cassandra, Kaelbling,

& Littman 1994).

Representing Policies When value iteration con-
verges, we are left with a set of vectors, Vanar, that con-
stitutes an approximation to the optimal value func-
tion, V*. Each of these vectors defines a region of the
belief space such that a belief state is in a vector’s re-
gion if its dot product with the vector is maximum.
Thus, the vectors define a partition of belief space.

Tt can be shown (Smallwood & Sondik 1973) that
all state vectors that share a partition also share an
optimal action, so a policy can be specified by a set of
pairs, {a*, a*), where w(b) = a* if a* - b > « - b for all
o€ Vﬁnal~

For many problems, the partitions have an impor-
tant property that leads to a particularly useful rep-
resentation for the optimal policy. Given the optimal
action and a resulting observation, all belief states in
one partition will be transformed to belief states occu-
pying the same partition on the next step. The set of
partitions and their corresponding transitions consti-
tute a policy graph that summarizes the action choices
of the optimal policy.

Figure 3 shows the policy graph of the optimal policy
for the simple POMDP environment of Figure 2. Each
node in the picture corresponds to a set of belief states
over which one vector in Vgp,) has the largest dot prod-
uct and is labeled with the optimal action for that set of
belief states. Observations label the arcs of the graph,
specifying how incoming information affects the agent’s
choice of future actions. The agent’s initial belief state
is in the node marked with the extra arrow. In the ex-
ample figure we chose the uniform belief distribution
to indicate that the agent initially has no knowledge of
its situation.

Using a Policy Graph Once computed, the policy
graph is a representation of the optimal policy. The
agent chooses the action associated with the start node,
and then, depending on which observation it makes,
the agent makes a transition to the appropriate node.
It executes the associated action, follows the arc for
the next observation, and so on.

For a reactive agent, this representation of a policy
is ideal. The current node of the policy graph is suf-
ficient to summarize the agent’s past experience and
its future decisions. The arcs of the graph dictate how
new information in the form of observations is incor-
porated into the agent’s decision-making. The graph
itself can be executed simply and efficiently.

Returning to Figure 3, we can give a concrete demon-
stration of how a policy graph is used. The policy
graph can be summarized as “Execute the pattern
right, right, left, stopping when the goal 1s encoun-
tered. Execute the action left to reset. Repeat.” Tt
is straightforward to verify that this strategy is indeed
optimal; no other pattern performs better.

Note that the use of the state estimator, SE, is no
longer necessary for the agent to choose actions op-
timally. The policy graph has all the information it
needs.

Figure 3: Sample policy graph for the simple POMDP
environment

ﬁ /]

Figure 4: Small unobservable grid and its policy graph

Results

After experimenting with several algorithms for solv-
ing POMDPs, we devised and implemented the Witness
algorithm and a heuristic method for constructing a
policy graph from Vana. Although the size of the op-
timal policy graph can be arbitrarily large, for most
of the problems we tried the policy graph included no
more than thirty nodes. The largest problem we looked
at consisted of 23 states, 4 actions and 11 observations
and our algorithm converged on a policy graph of four
nodes in under a half of an hour.

Generalization In the policy graph of Figure 3,
there 1s almost a one-to-one correspondence between
nodes and the belief states encountered by the agent.
For some environments, the decisions for many differ-
ent belief states are captured in a small number of
nodes. This constitutes a form of generalization in
that a continuum of belief states, including distinct
environmental states, are handled identically.

Figure 4 shows an extremely simple environment
consisting of a 4 by 4 grid where all cells except for the
goal in the lower right-hand corner are indistinguish-
able. The optimal policy graph for this environment
consists of just two nodes, one for moving down in the
grid, and the other for moving to the right. From the
given start node, the agent will execute a down-right-
down-right pattern until it reaches the goal at which
point it will start again. Note that each time it is in
the “down” node, it will have different beliefs about
what environmental state it is in.

Acting to Gain Information In many real-world
problems, an agent must take specific actions to gain
information that will allow it to make more informed
decisions and achieve increased performance. In most
planning systems, these kinds of actions are handled
differently than actions that change the state of the

any (Go Right

-left

Figure 5: Policy graph for the tiger problem

environment. A uniform treatment of actions of all
kinds is desirable for simplicity, but also because there
are many actions that have both material and infor-
mational consequences.

To illustrate the treatment of information-gathering
actions in the POMDP model, we introduce a modified
version of a classic problem. You stand in front of two
doors: behind one door is a tiger and behind the other
is a vast reward, but you do not know which is where.
You may open either door, receiving a large penalty if
you chose the one with the tiger and a large reward if
you chose the other. You have the additional option
of simply listening. If the tiger is on the left, then
with probability 0.85 you will hear the tiger on your
left and with probability 0.15 you will hear it on your
right; symmetrically for the case in which the tiger 1s on
your right. If you listen, you will pay a small penalty.
Finally, the problem is iterated, so immediately after
you choose either of the doors, you will again be faced
with the problem of choosing a door; of course, the
tiger has been randomly repositioned.

The problem is this: How long should you stand
and listen before you choose a door? The Witness
algorithm found the solution shown in Figure 5. If
you are beginning with no information, then you enter
the center node, in which you listen. If you hear the
tiger on your left, then you enter the lower right node,
which encodes roughly “I’ve heard a tiger on my left
once more than I've heard a tiger on my right”; if you
hear the tiger on your right, then you move back to
the center node, which encodes “I’ve heard a tiger on
my left as many times as I've heard one on my right.”
Following this, you listen again. You continue listening
until you have heard the tiger twice more on one side
than the other, at which point you choose.

As the consequences of meeting a tiger are made less
dire, the Witness algorithm finds strategies that listen
only once before choosing, then ones that do not bother
to listen at all. As the reliability of listening is made
worse, strategies that listen more are found.

Related Work

There is an extensive discussion of POMDPs in the oper-
ations research literature. Surveys by Monahan (Mon-
ahan 1982) and Lovejoy (Lovejoy 1991) are good start-
ing points. Within the AT community, several of the
issues addressed here have also been examined by re-
searchers working on reinforcement learning. White-

head and Ballard (Whitehead & Ballard 1991) solve
problems of partial observability through access to ex-
tra perceptual data. Chrisman (Chrisman 1992) and
McCallum (McCallum 1993) describe algorithms for
inducing a POMDP from interactions with the environ-
ment and use relatively simple approximations to the
resulting optimal value function. Other relevant work
in the AT community includes the work of Tan (Tan
1991) on inducing decision trees for performing low-
cost identification of objects by selecting appropriate
sensory tests.

Future Work

The results presented in this paper are preliminary. We
intend, in the short term, to extend our algorithm to
perform policy iteration, which is likely to be more effi-
cient. We will solve larger examples including tracking
and surveillance problems. In addition, we hope to ex-
tend this work in a number of directions such as apply-
ing stochastic dynamic programming (Barto, Bradtke,
& Singh 1991) and function approximation to derive an
optimal value function, rather than solving for it an-
alytically. We expect that good approximate policies
may be found more quickly this way. Another aim is to
integrate the POMDP framework with methods such as
those used by Dean et al. (Dean et al. 1993) for finding
approximately optimal policies quickly by considering
only small regions of the search space.

Acknowledgments

Thanks to Lonnie Chrisman, Tom Dean and (indi-
rectly) Ross Schachter for introducing us to POMDPs.

References

Astrom, K. J. 1965. Optimal control of markov de-
cision processes with incomplete state estimation. J.

Math. Anal. Appl 10:174-205.
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1991.

Real-time learning and control using asynchronous
dynamic programming. Technical Report 91-57, De-
partment of Computer and Information Science, Uni-
versity of Massachusetts, Amherst, Massachusetts.

Bellman, R. 1957. Dynamic Programming. Princeton,
New Jersey: Princeton University Press.

Cassandra, A. R.; Kaelbling, L. P.; and Littman,
M. L. 1994. Algorithms for partially observable
markov decision processes. Technical Report Forth-
coming, Brown University, Providence, Rhode Island.

Cheng, H.-T. 1988. Algorithms for Partially Observ-
able Markov Decision Processes. Ph.D. Dissertation,
University of British Columbia, British Columbia,
Canada.

Chrisman, L. 1992. Reinforcement learning with
perceptual aliasing: The perceptual distinctions ap-
proach. In Proceedings of the Tenth National Con-
ference on Artificial Intelligence, 183-188. San Jose,
California: AAAT Press.

Dean, T.; Kaelbling, L. P.; Kirman, J.; and Nichol-
son, A. 1993. Planning with deadlines in stochas-
tic domains. In Proceedings of the Eleventh National
Conference on Artificial Intelligence.

Howard, R. A. 1960. Dynamic Programming and
Markov Processes. Cambridge, Massachusetts: The
MIT Press.

Lovejoy, W. S. 1991. A survey of algorithmic meth-
ods for partially observed markov decision processes.

Annals of Operations Research 28(1):47-65.

McCallum, R. A. 1993. Overcoming incomplete per-
ception with utile distinction memory. In Proceedings
of the Tenth International Conference on Machine
Learning. Ambherst, Massachusetts: Morgan Kauf-
mann.

Monahan, G. E. 1982. A survey of partially observ-
able markov decision processes: Theory, models, and
algorithms. Management Science 28(1):1-16.

Moore, R. C. 1985. A formal theory of knowledge and
action. In Hobbs, J. R., and Moore, R. C., eds., For-
mal Theories of the Commonsense World. Norwood,
New Jersey: Ablex Publishing Company.

Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The
complexity of markov decision processes. Mathemai-
ics of Operations Research 12(3):441-450.

Smallwood, R. D.; and Sondik, E. J. 1973. The opti-
mal control of partially observable markov processes
over a finite horizon. Operations Research 21:1071-

1088.

Sondik, E. J. 1971. The Optimal Control of Par-
tially Observable Markov Processes. Ph.D. Disserta-
tion, Stanford University, Stanford, California.

Sutton, R. S. 1990. Integrated architectures for learn-
ing, planning, and reacting based on approximating
dynamic programming. In Proceedings of the Sev-
enth International Conference on Machine Learning.
Austin, Texas: Morgan Kaufmann.

Tan, M. 1991. Cost-sensitive reinforcement learning
for adaptive classification and control. In Proceedings
of the Ninth National Conference on Artificial Intel-
ligence.

Watkins, C. J. C. H., and Dayan, P. 1992. Q-learning.
Machine Learning 8(3):279-292.

Whitehead, S. D.; and Ballard, D. H. 1991. Learn-

ing to perceive and act by trial and error. Machine

Learning 7(1):45-83.

